Литмир - Электронная Библиотека
Содержание  
A
A
17-3 ЗАКОН ОМА

Закон Ома не может быть применен в цепях переменного тока потому, что он не учитывает реактивное сопротивление. Модифицируя закон Ома путем учета импеданса, можно получить общий закон, который применим к цепям переменного тока.

I = E/R преобразуется в I = E/Z

Эта формула применима к переменному току, текущему в любой цепи.

ПРИМЕР: Последовательная цепь содержит резистор сопротивлением 510 ом, индуктивное сопротивление 250 ом и емкостное сопротивление 150 ом. Какой ток течет по цепи, если к ней приложено напряжение 120 вольт?

Дано:

R = 510 Ом; XL = 250 Ом; Xc = 150 Ом; E = 120 В

Решение:

X = ХL + Хc = 250–150

X = 100 Ом (индуктивное)

Z2 = R2 + X2

Z2 =(510)2 +(100)2

Z = √(270100)

Z = 519,71 Ом

I = E/Z = 120/519,71

I = 0,23 А или 230 мА.

17-3. Вопросы

1. Каким образом модифицируется закон Ома, чтобы его можно было применить к цепям переменного тока для определения напряжения и тока?

2. Последовательная цепь содержит резистор сопротивлением 510 ом, индуктивное сопротивление 300 ом и емкостное сопротивление 375 ом. Какой ток течет по цепи, если к ней приложено напряжение 120 вольт?

17-4. ЦЕПИ RLC

Материал, изложенный до сих пор, применим ко всем цепям переменного тока. В приведенных примерах рассматривались последовательные цепи. Понятия, рассмотренные в этом параграфе, не содержат нового материала, но используют все принципы, изложенные ранее.

ПРИМЕР: На рис. 17-5 показана последовательная RLC цепь. Необходимо вычислить Хс, XL, X, Z и IT.

Введение в электронику - _10.jpg_6

Рис. 17-5. Последовательная цепь RLC.

Сначала вычислим Хс, XL и X.

 Дано:

f = 60 Гц; С = 470 мкФ; L = 27 мГн.

Решение:

Xc = 1/2πfC

Xc = 1/(6,28)(60)(0,000470)

XC = 5,65 Ом

XL = 2πfL

XL = (6,28)(60)(0,027)

XL = 10,17 Ом

X XL — Xc = 10,17 — 5,65

X = 4,52 Ом (индуктивное).

Используем значение X для вычисления Z.

 Дано:

X = 4,52 Ом; R = 10 Ом.

Решение:

Z2 = R2 + X2

Z2 = (10)2 + (4,52)2 = 120,43

Z = √(120,43) = 10,97 Ом.

Это значение Z может быть использовано для вычисления полного тока (IT).

Дано:

Z = 10,97 Ом; E = 120 В.

Решение:

IT = E/Z = 120/10,97

IT = 10,94 A. 

Помните, что во всех частях последовательной цепи течет один и тот же ток.

Если элементы в цепях соединены параллельно, то следует учесть одно главное различие между последовательными и параллельными цепями. При последовательном соединении по всей цепи течет один и тот же ток, а в параллельной цепи к каждой ветви приложено одинаковое напряжение. Вследствие этой разницы полный импеданс параллельной цепи должен вычисляться на основе тока в цепи.

В последовательной цепи RLC для вычисления реактивного сопротивления и импеданса используются следующие формулы:

X = ХсXL или X = XLХс, Z2 = R2 + X2.

В случае параллельных цепей должны использоваться следующие формулы:

IX = IсIL или IX = ILIX; I2Z = (IR)2 + (IX)2

Импеданс параллельной цепи находится с помощью формулы:

IZ = E/Z

Замечание: Если неизвестно напряжение (Е), приложенное к цепи, то для вычисления Ic, IL, Ix, IR и IZ можно использовать любое значение Е. То же значение напряжения должно использоваться для вычисления импеданса.

ПРИМЕР: Найти значение Z для цепи, показанной на рис. 17-6.

Введение в электронику - _11.jpg_6

Рис. 17-6. Параллельная цепь RLC.

Дано:

Е = 120 В; R = 60 Ом; Хс = 75 Ом; XL = 50 Ом.

Решение:

Первым шагом в вычислении Z является вычисление токов отдельных ветвей.

IR = E/R = 120/60 = 2 A 

Ix = E/Xc = 120/75 = 1,6 A

IL = E/XL = 120/50 = 2,4 A

Используя значения IR, Ic, IL, вычислим Ix и Iz

IX = IL — Ic = 2,4 – 1,6

Ix = 0,8 А (индуктивный)

I2z = (IR)2 + (Ix)2

I2z = (2)2 + (0,8)2 = 4,64

Iz = √(4,64) = 2,15 A.

Используя значение Iz, вычислим Z.

Iz = E/Z

2,15 = 120/Z 

Z = 120/2,15 = 55,8 Ом

В завершение этой главы отметим, что мы рассмотрели все блоки, из которых строятся электрические цепи. При изложении материала использовались ранее изученные понятия и соотношения.

17-4. Вопрос

1. Чем отличаются вычисления импеданса для последовательной цепи переменного тока и для параллельной цепи?

РЕЗЮМЕ

• Конденсатор в цепи переменного тока оказывает противодействие любому изменению напряжения, так же как он это делает в цепи постоянного тока.

• Ток опережает по фазе напряжение на конденсаторе на 90 градусов.

• Противодействие, оказываемое конденсатором переменному току, называется емкостным реактивным сопротивлением. Оно обозначается Хс и вычисляется по формуле:

XC = 1/2πfC

• Катушка индуктивности в цепи переменного тока противодействует любому изменению тока, так же как она это делает в цепи постоянного тока.

47
{"b":"594199","o":1}