Устойчивые стационарные точки фазовой плоскости или графика, представляющего решение системы итерационных соотношений, обычно являются пределом, к которому стремятся фазовые траектории системы. Такие точки называются аттракторами.
Аттракторами могут быть не только устойчивые стационарные точки, но и замкнутые траектории циклического типа (циклы и торы). В последние годы открыты и в настоящее время интенсивно изучаются ациклические аттракторы, названные странными.
Следующим этапом исследования является численное решение полученных уравнений. Численное решение совместно с качественным анализом позволяет строить не только зависимость меры от времени, которая была в прошлом, и сопоставить полученные данные с результатами наблюдений, но и предсказывать характер этой зависимости, которого следует ожидать в будущем.
Однако, учитывая наши предыдущие рассуждения, можно утверждать, что точное определение параметра целого системы в подавляющем большинстве случаев невозможно. Любое детерминированное математическое описание, использующее дифференциальные уравнения или итерационные процессы должно сопровождаться дополнительным к нему вероятностным описанием, характеризующим меру и характер распределения отклонения реальной величины параметра целого от его расчётного значения. Существование такой двойственности приводит к необходимости рассмотрения третьей величины, характеризующей структуру и её модель. Этой величиной может являться соотношение мер, определяемое некоторой функцией от параметра целого и меры его вариации. Элементы указанной триады в зависимости от ситуации и способа рассмотрения могут меняться местами.
Глава 3. Фазовое пространство динамической системы
1. Выбор основных координат, характеризующих систему, поведение которой близко к детерминированному, и качественный анализ фазового пространства, описывающего такую систему. Аттракторы системы и возможные бифуркации её фазового пространства
Однако анализа динамики одного, хотя и удачно выбранного, параметра целого чаще всего бывает недостаточно для полного исследования поведения сложной системы, особенно в тех случаях, когда выбранный параметр принимает устойчивое стационарное значение. Система существует и активно функционирует при постоянном значении параметра целого. В этом, случае можно ввести некоторые обобщённые координаты, изменение которых более подробно характеризуют динамику системы. При этом исследуемый объект может быть описан как динамическая система в некотором фазовом пространстве обобщённых координат.
Величина Xi,i=1,…, n, описывает изменение i-й координаты. X, может включать несколько переменных, характеризующих действие этой координаты, а возможно, и целого континуума. Эти координаты собраны в вектор состояния Х(Х1, Х2, …).
Состояние изучаемого объекта в данный момент времени может быть задано точкой в некотором множестве X, в частности в n-мерном многообразии, В этом случае изучаемому объекту соответствует некоторая n-мерная динамическая система, а множество всех точек, соответствующих различным состояниям, называется n-мерным фазовым пространством. Совокупность состояний данной системы в различные моменты времени формирует одномерное пространство (линию), называемую фазовой траекторией системы. Если фазовое пространство системы — n-мерное гладкое многообразие, то фазовая траектория системы гладкая кривая (за исключением некоторых особых точек) и для её описания (а также для описания пучка траекторий, начинающихся из различных точек фазового пространства) может быть использован аппарат системы дифференциальных уравнений dX/dt = f(X,t). Здесь dX/dt — производная вектора X по времени.
Пусть мы имеем какое-либо решение системы дифференциальных уравнений в виде Х(t) = Ф(Х0, t), где Х(t) — значения координат фазовой траектории, проходящей через точку Х0 в момент времени t0. В принципе, эта система уравнений может быть разрешена относительно t: t = Ф-1 (Х, Х0).
Предположим, что мы знаем состояние динамической системы в момент Tn, соответствующее точке Хn, и хотим определить состояние той же системы Xn+1 в момент Tn+1. Тогда, воспользовавшись предыдущими формулами, получим Xn+1= Ф(Х0, Тn+1) = Ф(Х0,Tn + (ΔT)n) = Ф{X0, [Ф-1(X0, Хn) + (ΔTn]}.
Введем понятие оператора F, определяющего изменение системы Х во времени: Хn+1 = F(Xn). Оператор F порождает итерационный процесс и указывает преобразование состояния динамической системы Хn в момент времени Tn в её состояние Хn+1 в момент времени Tn+1.
В принципе, оператор F может быть введён в более общем случае, когда непрерывная зависимость от времени либо отсутствует вовсе, либо не может быть определена.
Основной идеей Г. Хакена, являющейся одной из основополагающих в Синергетике, является идея выделения среди обобщенных координат сложной системы нескольких наименее устойчивых мод, названных им главными модами или параметрами порядка, неустойчивость которых приводит к качественному изменению состояния всей системы, и таких координат, которые сами мало изменяются, однако которых изменяет характер устойчивости состояния основных мод. Они были названы управляющими параметрами.
Теория нелинейных динамических систем в настоящее время интенсивно развивается. Предложены различные формы классификации систем и их математических моделей. Введена терминология, которая активно внедряется в практику теоретических и экспериментальных исследований. Понятия фазового пространства, стационарной точки, цикла, тора, аттрактора, бифуркации, сепаратрисы уже давно вошли в обиход тех, кто использует результаты качественного анализа и расчётов параметров модельных динамических систем для исследования реальных явлений.
2. Выделение странных аттракторов. Количественный и качественный анализ поведения системы, находящейся в области странного аттрактора. Изучение эргодических свойств исследуемой системы
В настоящее время бурно развивается теория «странных» непериодических аттракторов, породившая новую терминологию: каскад бифуркаций, числа Фейгенбаума, фрактальная геометрия, множество Мандельброта, показатели Ляпунова.
Рассматриваются различные сценарии перехода от регулярного движения системы к детерминированному хаосу:
1. через каскад бифуркаций удвоения периода устойчивых циклов Фейгенбаума;
2. через разрушение неустойчивого трёхмерного тора с образованием странного аттрактора по сценарию Рюэля-Такенса;
3. через явление перемежаемости (сценарий Помо-Маннервиля).
Разработаны математические методы и алгоритмы, позволяющие говорить о становлении нового направления науки, которое в настоящее время называется «теорией детерминированного хаоса», и применять их при исследовании тех объектов, которые могут быть описаны с помощью математических моделей динамических систем.
Н. А. Магницким и С. В. Сидоровым предложена новая теория динамического хаоса в нелинейных диссипативных системах, утверждающая существование единственного универсального сценария перехода к хаосу и рождения сингулярных аттракторов в нелинейных диссипативных системах дифференциальных уравнений.
Особо следует выделить анализ эргодических свойств динамической системы, указывающих на возможность неоднозначного предсказания её будущего поведения даже для случая динамических систем, описываемых детерминированными уравнениями.
Глава 4. Анализ поля системы
1. Классификация волн, вихрей, грибовидных (мультипольных) структур и транспортно-информационных систем
Всякая самоорганизующаяся система является открытой системой, обменивающейся с окружающей средой (полем) материей, энергией и информацией. Этот обмен может происходить непрерывно и дискретно. Взаимодействие с внешней средой может способствовать как сохранению структуры, так и её разрушению. Поэтому адекватное и полное описание самоорганизующихся систем возможно лишь совместно с окружающей средой — полем, в котором существует система.