Литмир - Электронная Библиотека
A
A

Поле системы может также рассматриваться как новая система. В частности, для него может быть выбран параметр целого и выполнен эмпирический анализ его динамического изменения от времени. Поле может во многих случаях определять управляющие параметры системы.

Введение при анализе взаимодействия системы и поля времени как основного параметра позволяет обратить внимание на одну очень важную особенность взаимодействия структуры и ее поля — на волновой характер выделяемых нами из окружающей природы структур.

Более детальное качественное и количественное исследование полей в большинстве случаев, в отличие от исследования отдельной структуры или системы должно проводиться не в рамках конечномерных, а в рамках континуальных моделей, то есть для описания поля должен быть использован глубоко развитый аппарат линейных и нелинейных дифференциальных уравнений в частных производных и связанных с ними бесконечномерных математических групп преобразований, а также конечно-разностных систем уравнений.

Однако прямое получение решений этих уравнений для данной конкретной системы на первом этапе исследований во многих случаях оказывается нецелесообразным, а иногда и невозможным, ввиду трудностей, связанных с построением системы дифференциальных уравнений или конечноразностных итерационных процессов.

Более адекватным является использование качественных методов, которые, в частности, включают классификацию волновых структур, порождаемых континуальными полями.

Нами предложена классификация волновых движений, структур и систем, опирающаяся на их общие волновые свойства, в рамках которой удалось проследить за характером влияния нелинейности на переход классических линейных волновых движений в динамические структуры и сложные самоорганизующиеся транспортно-информационные системы.

Классификация проводится по трём параметрам.

Классификация по типу:

1. Обобщённые волны, представляющие собой классы идентичных или почти идентичных объектов (квантов).

2. Вероятностные волны, характеризующие изменение плотности вероятности отыскания системы или структуры в одном из возможных для неё состояний из континуума возможных состояний системы.

3. Классические волны в сплошной среде, характеризующие изменение во времени и пространстве плотности какого-либо параметра или связанной между собой совокупности параметров сплошной среды.

Классификация по характеру взаимодействия с другими системами, аналогичная классификации конечномерных динамических систем

1. Свободные (собственные) волны.

2. Вынужденные волны.

3. Автоволны.

Классификация по степени нелинейности

1. В качестве первого класса рассматриваются все волны относительно малой амплитуды, математическое описание которых может быть дано в виде совокупности решений линейных волновых уравнений в частных производных.

2. Ко второму классу, названному нами умеренно-нелинейными волнами, отнесены различные формы ударных волн в сплошных средах, солитоны, а также скачки тех или иных параметров в однородной среде и границы раздела сред. В качестве подкласса данного класса могут быть рассмотрены диссипативные континуальные структуры и структуры, формируемые в результате возникновения режимов с обострением.

3. К третьему классу, названному вихревыми ударными волнами, отнесены вихревые структуры, формируемые вследствие пространственной потери устойчивости фронта и формы умеренно нелинейных волн.

4. К четвертому классу, названному грибовидными структурами, отнесены структуры мультипольной природы, формирующиеся из вихревых структур и вторичных умеренно-нелинейных волн — вихревых пелен. Различные модификации и комбинации структур такого типа составляют основу практически всех объектов живой и неживой природы.

5. К пятому классу отнесены структуры, названные нами древовидными, бифуркационная динамика которых может быть описана методами математической теории сетей и графов, в частности при помощи теории математических деревьев.

6. К шестому классу мы отнесли сложные самоорганизующиеся системы, названные нами транспортно-информационными, и являющиеся, в основном, результатом трансформации и взаимодействия грибовидных и древовидных структур и волн более низких классов.

Несмотря на то, что четвертый, пятый и шестой классы структур и систем встречаются и в неживой природе, наиболее широко они распространены в биологических объектах. Поэтому общие закономерности их динамики оказываются важными не только для физики и химии, но и, главным образом, для биологии и наук о человеке и обществе.

Изучаемая структура или система и её поле на этом этапе исследований должна быть отнесена к тому или иному классу.

2. Вихре-волновой резонанс

Предложенная классификация позволила объяснить ряд новых физических явлений, обнаруженных при исследовании взаимодействия сложных систем и их полей, как резонансное волновое взаимодействие вихревых и грибовидных структур между собой или с волновыми структурами поля, в результате которого возникают новые аномальные явления и формируются новые структуры и системы.

В последние годы было открыто и широко исследовано резонансное взаимодействие поверхностных и внутренних гравитационных волновых движений в стратифицированной жидкости или газе.

Нами была высказана гипотеза о возможности возникновения аналогичных резонансных явлений также при взаимодействии свободных вихрей и вихревых структур, а также каверн и отрывных зон, формирующихся при движении тел в неоднородной сплошной среде (поле), с диспергирующими внутренними волнами и другими типами волновых движений, а также при взаимодействии волновых структур различных классов между собой.

При теоретическом обосновании предложенной гипотезы была использована изложенная выше классификация волн, вихрей, структур и систем, на основании которой были определены необходимые условия резонанса, названного нами вихре-волновым (или структурно-волновым), состоящие в том, что скорости и размеры взаимодействующих структур должны быть близки. Теоретические расчеты и экспериментальные исследования частных проявлений вихре-волнового резонанса подтвердили высказанную гипотезу.

Экспериментально и теоретически вихре — волновой резонанс исследовался при движении в неоднородной среде несимметрично обтекаемых тел — крыльев. В этом случае возникают две вихре — волновые структуры:

а) вихревой пограничный слой на поверхности крыла и вихревой след за ним;

б) диспергирующие поверхностные и внутренние волны в неоднородной среде.

Проблема их взаимодействия частично поддается математическому моделированию. Для резонансного режима движения были выполнены расчеты характеристик потока при взаимодействии возникающих вблизи крыла вихревых структур с возбуждаемыми движением крыла присоединенными внутренними и поверхностными волнами. Результаты расчётов показали, что даже при установившемся движении крыла в неоднородной среде, если длина хорды крыла близка к полудлине присоединенной к движущемуся крылу гравитационной волны, в потоке жидкости или газа должны возникать аномальные возмущения, приводящие к появлению новых резонансных структур.

При этом с уменьшением относительного скачка плотностей при сохранении размеров движущегося тела скорость его движения, соответствующая резонансному режиму, также уменьшается, тем не менее, кинематические возмущения, связанные с проявлением вихре-волнового резонанса, сохраняют свою интенсивность.

Если отношение плотностей сред, разделяемых границей, стремится к нулю, то относительная скорость, при которой возникает резонанс, также стремится к нулю.

Этот результат, хотя ему и может быть найдено разумное теоретическое объяснение, УДИВИТЕЛЕН и, по нашему мнению, чрезвычайно значим: малые флуктуации плотности и малые скорости относительного движения могут привести, благодаря вихре-волновому резонансу, к значительным возмущениям в стратифицированной среде. Аналогичные явления могут происходить вблизи подводных хребтов или горных массивов на поверхности Земли при наличии незначительных скачков плотности, вызываемых сравнительно слабыми ветрами и течениями.

7
{"b":"589796","o":1}