Литмир - Электронная Библиотека
A
A

На этом этапе нужно не точное знание о природе, а шарж, схватывающий характерные черты изучаемых объектов и процессов. Это связано с тем, что научные данные — это проверяемые опытом данные, то есть повторяющиеся с той или иной точностью. Чем более сложен объект научного исследования, тем больше в нем индивидуального, тем меньшее число частных особенностей предмета может быть научно исследовано на первом этапе. Если мы оставляем при исследовании сложного объекта лишь одну обобщенную координату (меру, параметр целого), то в качестве неё можно использовать величину, характеризующую объём многообразия координат, более детально описывающих систему. Это может быть действие, энергия, масса системы, энтропия или информация, реальный геометрический объем, количество входящих в неё подсистем, количество денег, прибыль, количество слов в языке и даже переменная возможность существования самой системы.

В ряде случаев можно принять за параметр целого изучаемого объекта число элементов — квантов, которые включены в объект как в обобщенную волну. Если каждый из них имеет свою меру или параметр целого и эти меры аддитивны, — суммарную меру всех квантов.

В этом случае введение параметра целого подразумевает значительное информационное сжатие, то есть идентификацию квантов, включённых в систему как в обобщённую волну.

Однако, параметр целого не полностью определяет динамику исследуемой структуры или системы. В действительности, в некоторых случаях отдельные части системы могут воздействовать на изменение этого параметра. Поэтому близкие по типу системы на одном и том же этапе развития могут иметь отличающиеся друг от друга значения этого параметра. Правильно выбранный параметр целого обычно является управляющим параметром системы, он изменяется более медленно, чем другие обобщённые координаты системы, и более устойчив к внешним возмущениям и к переходу от анализа одной системы к изучению другой.

В некоторых случаях параметр целого может характеризовать качество системы и различие в этих параметрах для сравниваемых систем определяет превосходство одной системы над аналогичной.

2. Простейшая форма математического описания объекта. Рождение и разрушение объекта

Простейший вид описания состоит в представлении динамики объекта в виде двух чисел 0 и 1, где 0 соответствует отсутствию объекта, а 1 — его существованию.

Введём групповое умножение.

0*1=0 — ликвидация объекта.

1*0=0 — подтверждение отсутствия объекта.

0*0= 1 — рождение объекта.

1*1=1 — подтверждение существования объекта.

{0,1} — коммутативная группа, описывающая существование объекта.

На этом уровне изучения уже можно построить одномерное фазовое пространство, в котором фазовая траектория описывается в виде двух направленных отрезков прямых, отрезка {0,1} и отрезка {1,0}.

Если взаимно однозначно отобразить группу {0,1} на группу {-1,1}, являющуюся группой зеркальной симметрии, то устанавливается соответствие между существованием и отсутствием объекта с его тождественностью самому себе и зеркальным отображением.

Всякий реальный объект должен иметь начало и конец во внешнем времени, а следовательно, некоторый период существования. Предположим, что до момента t1, объекта не существовало. Параметр целого данного объекта равнялся нулю. В момент t1, произошло рождение объекта, который просуществовал до момента времени t2, после которого он исчез. Такое простейшее эволюционное рассмотрение позволяет ввести ряд математических понятий.

1. Момент рождения объекта t1.

2. Момент исчезновения — разрушения объекта или его превращения в новый объект t2.

3. Срок жизни объекта dt = t2 — t1.

Если рассмотреть множество идентичных структур (квантов) — обобщённую волну, — то подобный подход позволяет нам вводить в рассмотрение определённые типы распределений, связанные с числом структур, их моментами рождения и гибели и длительностью их существования.

Предположение о конечности времени существования реальных объектов ставит следующие вопросы:

Что такое рождение структуры (системы)?

Что такое разрушение структуры (системы)?

При первичном (простейшем) рассмотрении можно считать, что структура рождается и исчезает мгновенно. В этом случае можно осуществить простейшее графическое, описание динамики объекта в виде графика зависимости параметра целого от времени. Этот график представляет собой три отрезка горизонтальных прямых:

— бесконечность < t <= t1,

μ = 0

t1 < t < t2,

μ = 1

t2 <= t < бесконечность,

μ = 0

(Здесь, как и ниже, для параметра целого, описывающего структуру, введено обозначение

μ
.).

В моменты возникновения и разрушения структур в природе должны происходить качественные изменения (ведь рождается или исчезает) нечто новое).

Большинство существующих научных теорий описывает взаимодействие уже существующих структур. Проблема же их возникновения и разрушения не имеет в настоящее время полного решения.

Однако, при первичном исследовании конкретного объекта целесообразно начинать с рассмотрения именно этого вопроса, тем более, что во многих случаях эго решение представляет наибольший практический интерес.

В простейшем рассмотрении мы считали, что рождение и исчезновение структуры происходят мгновенно. Это достаточно сильное допущение, хотя во многих случаях мы действительно наблюдаем очень быстрое формирование новых структур и разрушение старых. В человеческом языке существуют такие слова, как катастрофа, кризис, взрыв, революция, рождение, разрушение, удар и т. д. Однако в любом случае рождение и разрушение структур — это процесс, имеющий ту или иную протяжённость во времени.

В некоторых случаях процесс формирования структур может оказаться длительным. Тогда вместо мгновенного формирования структуры и мгновенного её разрушения необходимо ввести конечные периоды её возникновения и разрушения. Это вполне естественное допущение влечёт за собой ряд следствий.

Первое следствие состоит в том, что возникает вопрос, а что же происходит со структурой в эти периоды, существует она или нет? Ответ на этот вопрос совсем не тривиален. По-видимому, в периоды рождения и разрушения про структуру нельзя с полной определённостью сказать ни то, что она существует, ни то, что её нет. Параметр целого структуры, изменяясь, принимает значения, промежуточные между нулём и единицей.

Если считать процесс формирования структуры непрерывным, то горизонтальные прямые вблизи точек ({ и <г можно соединить плавной кривой.

В период рождения уже нельзя сказать, что структура не существует, но ещё нельзя сказать, что структура полностью оформлена. На этом уровне рассмотрения попытка интерпретации введенного нами параметра оказывается не вполне корректной. По-видимому, такая интерпретация должна быть сделана в каждом частном случае отдельно с учетом эмпирических данных и «физического смысла», который должен вкладываться в понятие параметра целого, описывающего структуру.

Укажем путь возможного решения этой задачи с другой стороны. Мера, характеризующая произвольную структуру, может быть получена как объём многообразия, формирующегося обобщёнными координатами, которые характеризуют структуру при более детальном описании. Этот объём может меняться со временем. Если структуры нет, то мера равна нулю. В процессе существования (функционирования) структуры существует какой-то промежуток времени, когда многообразие, описывающее структуру, имеет максимальный объём. Если объём многообразия, описывающего структуру в любой момент времени, поделить на его максимальное значение, то получим в наиболее естественном случае кривую, которую мы построили ранее из других соображений и форму которой ищем.

В случае, если изучаемая структура в течение длительного времени остаётся стабильной и сохраняет фазовый объём соответствующего ей многообразия, а в периоды возникновения и разрушения резко его изменяет, то её параметр целого может быть отождествлен с объёмом многообразия, её описывающего.

3
{"b":"589796","o":1}