Литмир - Электронная Библиотека
A
A

Люминесценция окрашенных срезов тканей различных органов позволяет изучить их строение. По составу излучения выделений различных органов человека можно судить о правильности их функционирования, определять характер заболеваний. Люминесценция особенно хорошо определяет грибковые заболевания кожи и устанавливает появление инфекции на коже, волосах и т. д. В криминалистике по свечению незаметных пятен можно определить их природу и происхождение. При ультрафиолетовом облучении обнаруживаются незаметные надписи, подделки банкнотов и деловых бумаг.

В ультрафиолетовом свете прочитывается стертый текст, попорченные надписи на старинных документах, проявляются рисунки под позже нанесенным слоем краски и т. д.

Люминесцентный анализ внедрен для изучения состава нефти, битумов и минеральных масел, а также для поисковых целей. Люминесценция кернов из скважин и вытяжек из них, а также вод скважин помогает геологам судить о характере и условиях залегания того или иного полезного ископаемого.

Трудно указать (ввиду их многочисленности) другие области науки и техники, где применяют люминесцентный анализ. Укажем лишь, что это почвоведение, текстильная промышленность (для изучения структуры волокон), химическая промышленность (определение качества препаратов и реактивов), палеонтология, археология, биология и многие другие. Люминесцентные микроскопы, радиолокационные установки, рентгеновские экраны (в том числе усиливающие действие рентгеновских лучей на фотоэмульсию пластинок), трубки катодных осциллографов с люминесцирующим экраном, телевизионные трубки — вот далеко не полный перечень физических приборов, без которых невозможны современная техника и быт человека.

Еще одно интересное применение люминесценции — это люминесцентная дефектоскопия. Часто на металлических изделиях в процессе отливки и дальнейшей их механической обработки появляются мельчайшие, невидимые глазом трещины и раковины.

На поверхность такого изделия наносят люминофор (в растворе или в порошке), который заполняет трещины. Спустя некоторое время люминофор удаляется (смывается или стирается) с поверхности изделия и оно облучается ультрафиолетом. Оставшийся в трещинах люминофор под действием ультрафиолетовых лучей «покажет» наличие дефекта изготовленной детали (рис. 56). В металлургии люминесцентную дефектоскопию широко применяют для стопроцентного контроля изделий механических, термических, литейных цехов и, что особенно важно, для изделий из немагнитных сплавов (литье из алюминиевых, магниевых сплавов, аустенитных сталей и т. д.), т. е. тех изделий, которые благодаря сложности своей конфигурации исключают другие виды дефектоскопии (рентгеновский, ультразвуковой).

Беседы о физике и технике - _56.jpg

Рис. 56. Дефектоскопия металлических деталей. Видны люминесцирующие трещины

ЛЮМИНЕСЦЕНЦИЯ И РАДИАЦИЯ — ЕСТЬ ЛИ МЕЖДУ НИМИ СВЯЗЬ?

В науке и технике большое значение имеет обнаружение быстродвижущихся частиц вещества — электронов, протонов, осколков ядер и др. В некоторых случаях это удается сделать с помощью люминесцентного экрана, на который попадают невидимые частицы, вызывая вспышки свечения, или сцинтилляции. Люминесцентные вещества, применяемые для получения сцинтилляций, называют сцинтилляторами. Такие вспышечные экраны (помимо специальных счетчиков или в совокупности с ними) составляют основу специальных приборов для определения полученной дозы вредных радиации — дозиметров. Дозиметры отзываются на рентгеновские и γ-кванты, β-излучение (поток быстрых электронов), а-частицы (ядра гелия) и другие частицы, образующиеся в результате радиоактивного распада в естественных условиях, в ускорителях и на атомных электростанциях.

Итак, если еще недавно слово «люминесценция» было знакомо только физикам, теперь оно стало широко распространено, как слова «электричество», «радио», «телевидение», «космос», «атомная энергия». А без самого явления люминесценции и его использования мы не можем себе представить не только современной науки и техники, но и быта современного человека.

16. Человеку должен служить только мирный атом

Наша прекрасная планета Земля родилась 4 млрд. лет тому назад, около миллиона лет отделяют нас от появления первого человека, три тысячи лет тому назад появились первые науки (математика, астрономия, философия). Так неужели разумные люди допустят, чтобы все это погибло, чтобы этот мир был снова окутан глубокой тьмой, чтобы погибла цивилизация, может быть, единственная в нашей обозримой части Вселенной?

Наше время с полным основанием называют веком атомной энергии, веком космических полетов, автоматизации, а порой лазерным веком. Трудно отдать предпочтение какому-либо из этих утверждений: каждое из них отражает те или иные существенные стороны современного этапа развития научно-технической мысли.

И ВСЕ-ТАКИ КАКОЕ МЕСТО ЗАНИМАЕТ В ЭТОМ РЯДУ ЯДЕРНАЯ ФИЗИКА?

Проникновение в структуру атомного ядра и, как результат этого, овладение ядерной энергией явились одними из важнейших направлений современного научно-технического прогресса. Быстрое и успешное развитие атомной физики началось с 1932 г. — с открытия нейтрона, которое позволило преодолеть трудности, стоящие тогда на пути изучения атома. Нейтрон — это тот «золотой ключик», без которого нельзя было бы открыть «дверь» в большую ядерную энергетику. Роль нейтрона очень велика в практической деятельности человека, в получении искусственных радиоактивных элементов, в прикладных исследованиях и в промышленном применении, в геологических разведках, в медицине, в биологии и т. п. С некоторыми отраслями народного хозяйства, где используют свойство некоторых элементов делиться под действием нейтронов, мы ознакомимся в настоящей беседе.

Уже через 10 лет после открытия нейтрона стал возможным пуск первого ядерного реактора в декабре 1942 г. в США с активным участием ученых-физиков из многих стран мира. В декабре 1946 г. в СССР был пущен первый в Европе и Азии исследовательский ядерный реактор, созданный силами советских ученых, инженеров и рабочих. Ядерные реакторы являются мощным источником нейтронов, которые в зависимости от их энергии делятся на холодные (10-5—5∙10-3 эВ), тепловые (5∙10-3—0,5 эВ), быстрые (105—108 эВ). Наиболее широкое применение получили тепловые, или медленные, нейтроны, которые чаще всей, используют в многогранной деятельности человека, в том числе и в ядерной энергетике.

К СОЖАЛЕНИЮ, О НАЧАЛЕ АТОМНОЙ ЭРЫ ЧЕЛОВЕЧЕСТВО УЗНАЛО НЕ ПО РЕПОРТАЖАМ С ПЕРВЫХ ЯДЕРНЫХ РЕАКТОРОВ, А ПО ВЗРЫВАМ АТОМНЫХ БОМБ В ХИРОСИМЕ И НАГАСАКИ.

Взрывы над Хиросимой и Нагасаки, бесполезные в военном отношении, дали понять, что в мире возникла ситуация, когда одно государство решило диктовать свою волю другим. В этой обстановке и Советское правительство вынуждено было пойти на создание атомного оружия. Поэтому долгие годы исследования по использованию ядерной энергии были строго засекречены.

НО СОЗДАВАЯ ЯДЕРНОЕ ОРУЖИЕ, УЧЕНЫЕ ОДНОВРЕМЕННО РАБОТАЛИ И НАД ИСПОЛЬЗОВАНИЕМ АТОМНОЙ ЭНЕРГИИ В МИРНЫХ ЦЕЛЯХ, НАД СОЗДАНИЕМ АТОМНЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК, АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ (АЭС)

Такая АЭС была впервые сооружена в СССР, что положило начало победному шествию ядерной энергетики по многим странам мира. Началось же оно в Обнинске (в 105 км от Москвы), где 27 июня 1954 г. в энергосеть выдала электрическую энергию первая в мире АЭС. Пуск небольшой Обнинской АЭС мощностью 5 МВт начал новую эру в технике, в энергетике — эру получения электрического тока за счет энергии, образующейся при делении ядер урана. Эта АЭС, как первопроходец, открыла широкую дорогу большой ядерной энергетике.

36
{"b":"577202","o":1}