Литмир - Электронная Библиотека
A
A

СУЩЕСТВУЮТ ЛИ СОЛИТОНЫ В ТВЕРДОМ ТЕЛЕ?

Благодаря работам выдающегося советского ученого Я.И.Френкеля (1894–1952) была разработана атомная модель движущейся дислокации (модель Френкеля — Канторовой) — дислокации ФК, сыгравшей огромную роль в современной физике твердого тела, а следовательно, в современной науке и производстве, связанных с холодной и горячей обработкой металлов (ковкой, резанием, литьем и т. д.).

Общеизвестна модель строения большинства твердых тел, имеющих кристаллическую структуру. В узлах кристаллической решетки находятся атомы или ионы, совершающие колебательное движение относительно положения равновесия. Фундаментальная идея, высказанная Я. И. Френкелем, заключается в том, что некоторые атомы или ионы могут покидать узлы решетки и блуждать по кристаллу, а их место становится вакантным, т. е. пустым.

Это пустое место получило название вакансии; самое же важное в том, что она может также перемещаться по кристаллу подобно частице. По выражению самого Френкеля, эти вакансии можно рассматривать как своего рода «отрицательные атомы». Представление о вакансиях как частицах оказалось исключительно важным.

Оно было применено выдающимся физиком-теоретиком Полем Дираком в 1928 г. для создания теории антиэлектронов, т. е. позитронов. Впоследствии идея о вакансиях-дырках получила применение и в теории полупроводников.

Таким образом, согласно модели Френкеля — Канторовой, дислокация ФК — это особого рода дефект в кристаллической структуре твердого тела или солитон со всеми его особенностями.

Предельный случай дислокации — это вакансия в кристаллической решетке. Как уже отмечалось, она может перемещаться по кристаллу, но это перемещение может осуществиться тогда, когда какой-либо атом переместится на свободное место, преодолев силы притяжения со стороны окружающих его атомов. Гораздо легче осуществляется перемещение дефекта, в котором атомы вокруг вакансии также смещены. Этот дефект и есть дислокация, которая может перемещаться по кристаллу как частица, не изменяя своей формы.

ГДЕ ЕЩЕ ПРИМЕНЯЮТ СОЛИТОНЫ?

Наука о нелинейных колебаниях и солитонах является одной из самых молодых, ибо только в последнее десятилетие осознана общезначимость солитонов и сделан ряд физических и математических открытий, а сама теория солитонов появилась лишь во второй половине XX в. Потребуется, видимо, не менее 20–30 лет, чтобы наука о солитонах «окрепла и твердо стала на ноги».

То, что она имеет большое будущее, ни у кого не должно вызывать сомнений, так как нигде единство природы и универсальность ее законов не проявляются так наглядно и убедительно, как в колебательных и волновых процессах.

Оглянитесь вокруг! Везде вы столкнетесь с колебательным движением, а весь мир пронизан электромагнитными волнами. Колебания кустов и деревьев; качелей и маятника в часах; биение сердца и колебание зданий, станков и механизмов; колебательные процессы в телевизоре, саксофоне, океанском лайнере и самолете… И все это изучает единая наука — теория колебаний и волн, в которой все больший вес приобретают нелинейные процессы и эффекты.

Сейчас изучают солитоны в кристаллах, магнитных материалах, сверхпроводниках и живых организмах, в атмосфере Земли и планет, в Галактиках. Есть предположение о том, что элементарные частицы (например, протон) тоже можно рассматривать как солитоны, что могут существовать солитоны, несущие магнитный заряд.

Уже начинается применение солитонов для хранения и передачи информации, а это со временем может привести к существенным и даже революционным изменениям, например, в технике связи, принципах работы ЭВМ и других областях человеческой деятельности.

Нам трудно сейчас судить о других технических и промышленных возможностях использования солитонов. В жизни было много случаев, когда использование тех или иных теоретических и экспериментальных открытий было проблематичным. Даже великие Рентген и Герц не только не увидели, но и подвергли сомнению вероятность практического применения открытых ими целительных лучей и электромагнитных волн!

Итак, солитон — это волна. Но этот же солитон похож на частицу. Решение солитонного типа, как показано недавно советским физиком В. И. Патвиашвили, есть и у уравнений, описывающих атмосферу. Образование, которое соответствует этому решению, по своим свойствам очень близко антициклону. Там, где есть вихри, могут, следовательно, возникать солитоны. С другой стороны, сами вихри и более сложные объекты, построенные из вихрей, можно рассматривать как многомерные солитоноподобные образования.

В 1958 г. акад. Р. 3. Сагдеев показал, что уединенные волны могут распространяться и в плазме. Таким образом, изучая солитоны, мы входим в круг вопросов о самом мироздании, а в этом не только познавательный, но и глубокий философский аспект науки о солитонах.

6. К чему привело открытие электрона

Электрон — одна из электрически заряженных элементарных частиц класса лептонов, обладающая массой покоя 9,109534∙10-31 кг и отрицательным элементарным электрическим зарядом 1,6021829∙10-19 Кл, — был экспериментально открыт в 1897 г. известным английским физиком Дж. Дж. Томсоном, хотя идеи о существовании электрона высказывались многими учеными значительно раньше, а простейшие электрические и магнитные явления были известны еще в глубокой древности.

Само слово «электрон», как известно, по-гречески означает янтарь. Для обозначения электричества оно было введено У. Гильбертом в 1600 г., так как первые сведения об этой частице сводились к тому, что некоторые тела (например, янтарь) при трении «электризуются», т. е. начинают притягивать к себе легкие предметы.

РАССКАЖИТЕ ПОДРОБНЕЕ ОБ ИСТОРИИ РАЗВИТИЯ ЭЛЕКТРИЧЕСТВА И МАГНЕТИЗМА. ОНА ИНТЕРЕСНА ТЕСНЫМ ПЕРЕПЛЕТЕНИЕМ ТЕОРЕТИЧЕСКИХ ИССЛЕДОВАНИЙ С ПРАКТИЧЕСКОЙ РЕАЛИЗАЦИЕЙ ПОЛУЧАЕМЫХ РЕЗУЛЬТАТОВ.

Учение об электричестве, долгое время представлявшее собой совокупность несистематизированных фактов и противоречивых гипотез, за последние сто лет превратилось в одну из обширных, фундаментальных областей физики и современной техники.

К середине XIX в. основные экспериментальные законы, описывающие поведение электрических зарядов, были хорошо известны. Так, открытие Грэем электрической проводимости как будто бы подтверждало идею о том, что электричество фактически является «веществом» особого рода, веществом, которое может двигаться через проводники. Открытие Дюфе (1734) факта существования двух видов электричества осложнило проблему.

Природа этого «вещества» продолжительное время являлась предметом интенсивных теоретических и экспериментальных исследований.

Только в 1775 г. француз Ш. О. Кулон (1736–1806) поставил первый количественный эксперимент. В эти же годы разрабатывались и источники электрической энергии. Так, 1745 год отмечен изобретением лейденской банки, в 1782 г. появился конденсатор Вольта, а в 1801 г. — вольтов столб.

В начале XIX в. русский ученый В. В. Петров (1761–1834) изготовил гальваническую батарею большой мощности, что позволило получить в 1802 г. электрическую искру при разрыве цепи батареи. В место разрыва им были помещены угольки, дающие возможность получать яркое пламя. В. В. Петров использовал полученную дугу в качестве первого источника электрического освещения. Одновременно им было предложено использование электрической дуги для плавления металлов в так называемых дуговых печах. Эти открытия послужили началом создания нового прикладного направления в науке — электротехники.

А ДУГОВОЙ РАЗРЯД УСПЕШНО «РАБОТАЕТ» И СЕЙЧАС.

В настоящее время дуговой разряд используют в качестве мощного источника света в прожекторах, проекционных аппаратах и киноаппаратах. В металлургии широко применяют электропечи, в которых источником теплоты служит дуговой разряд. Дуговой разряд используют и для сварки металлов.

11
{"b":"577202","o":1}