Литмир - Электронная Библиотека
A
A

Люминесцентные лампы значительно экономичнее ламп накаливания. Они дают света в 4–5 раз больше, чем лампы накаливания той же мощности, и служат в 3–6 раз дольше обычных электрических лампочек.

КАК РАБОТАЕТ ЛЮМИНЕСЦЕНТНАЯ ЛАМПА?

Современная люминесцентная лампа представляет собой газоразрядную трубку, не содержащую воздуха, но наполненную парами ртути. Внутренние стенки трубки покрывают тонким слоем люминофора, придающего трубке матовый цвет.

При работе лампы температура ее стенок не превышает 40–50 °C. Для облегчения разряда в лампу (рис. 54) вводится небольшое количество аргона. С обеих сторон трубки 2 имеются электроды 4, представляющие собой металлические спирали, по которым при зажигании лампы через стартер 1 пропускается переменный ток, накаливающий эти спирали. Электроны, испускаемые разогретыми спиралями, ускоряются электрическим полем и возбуждают пары ртути и аргона.

Беседы о физике и технике - _54.jpg

Рис. 54. Простейшая схема включения люминесцентной лампы:

1 — пусковой стартер, 2 — стеклянная трубка, 3 — слой люминофора, 4 — электроды, 5 — дроссель, 6 — источник переменного напряжения (220 В)

Переменный ток, которым мы питаем лампу, меняет свое направление 50 раз в секунду. Поэтому электроды в трубке становятся то катодом, то анодом. Ударяясь об электроды, электроны дополнительно разогревают их. И через 1–2 с оба электрода так нагреваются, что дальнейший их разогрев электрическим током не является необходимым. В этот момент прекращается подача тока стартером на разогревание электродов, и ток теперь идет не по спирали электродов, а прямо через трубку от одного электрода к другому. Возбужденные атомы аргона и ртути при переходе в основное невозбужденное состояние испускают в основном ультрафиолетовое излучение. Оно попадает на кристаллы люминофора 3 (кристаллофосфора), находящиеся на внутренней поверхности трубки, и заставляют их испускать видимый свет, ярко освещающий пространство вокруг лампы.

В качестве покрытия применяют различные люминофоры. Это галофосфаты — соединения типа апатитов, активированных сурьмой и марганцем; фосфоры, состоящие из силикатов цинка и бериллия, активированных марганцем, и др.

От количества тех или иных химических элементов в люминофоре, от самого химического состава люминофора будет зависеть прежде всего тот или иной тип дневного света.

ГОВОРЯТ, ЧТО НА ЛАМПЫ ДНЕВНОГО СВЕТА СМОТРЕТЬ НЕЛЬЗЯ?

Всегда необходимо помнить, что непосредственное наблюдение любого источника света приводит к резкому утомлению глаз, и это, безусловно, вредно. Хотя люминесцентные лампы имеют сравнительно невысокую поверхностную яркость (~ 1∙104 нит), все же недопустимо располагать их в открытом виде на уровне глаз. Их следует группами помещать в закрытые светильники; это предохранит глаза от переутомления и обеспечит равномерную цветность. Напомним, что наименьшая яркость, воспринимаемая глазом, составляет 1∙10-6 нит, а наибольшая, вызывающая болезненные ощущения, — около 105 нит (металлический волосок лампы накаливания дает яркость в (1,5–2)∙106 нит, поверхность Солнца — 1,5∙109 нит, а поверхность экрана в кинотеатре — около 20 нит). При люминесцентном освещении также недопустима и низкая освещенность помещений и рабочих мест, так как она соответствует освещенности в пасмурную погоду, что отрицательно влияет на нервную систему и, следовательно, уменьшает производительность труда.

ЛЮМИНЕСЦИРУЮЩИЕ КРАСКИ ТОЖЕ ОТНОСЯТСЯ К НАШЕМУ РАЗГОВОРУ?

Конечно. Люминесцентные порошки, возбуждаемые ультрафиолетовыми лучами, используют для создания декораций и картин особого вида живописи — декоративной живописи. При освещении скрытыми от зрителей источниками ультрафиолетового излучения — ртутными лампами — краски начинают светиться и переливаться различными цветами.

Чтобы зрителям не был виден синевато-зеленоватый цвет подсветки, ртутные лампы-прожекторы прикрывают светофильтрами — темными стеклами, содержащими оксид никеля. Такие стекла не пропускают видимого света, но хорошо пропускают невидимое ультрафиолетовое излучение.

Никого уже сейчас не удивляют люминесцентные рекламы, дорожные и указательные знаки, шкалы измерительных приборов, освещение люминесцентными лампами помещений магазинов, промышленных предприятий, станций метро. Они удобны в сортировочных и колориметрических цехах текстильных фабрик. Это позволило в них ввести трехсменную работу вместо укороченной односменной, связанной с естественным освещением.

ЧТО ТАКОЕ ЛЮМИНЕСЦЕНТНЫЙ АНАЛИЗ?

Люминесцентный анализ — метод исследования различных объектов, основанный на наблюдении их люминесценции. Для люминесцентного анализа можно использовать как собственную люминесценцию исследуемых объектов, так и люминесценцию специально для этого применяемых люминесцирующих красителей — флуорохромов.

Ввиду того что люминесценция непосредственно связана с излучающим веществом, его составом и структурой, по спектральному составу излучения и его длительности в ряде случаев можно определить излучающее вещество. Это и составляет содержание качественного люминесцентного анализа.

Количественный анализ основан на том, что при соблюдении определенных условий интенсивность люминесценции пропорциональна концентрации люминесцирующего вещества. Для измерения интенсивности люминесценции при люминесцентном анализе пользуются фотометрами различного типа.

Химический люминесцентный анализ превосходит по точности обычный химический анализ, позволяя обнаруживать стомиллиардные доли грамма искомого вещества.

Существенно, что при этом анализе исследуемое вещество не подвергается изменению.

В наши дни широко применяют сортовой люминесцентный анализ.

Он основан на том, что различные сорта сходных объектов (стекла, семян и т. п.) под действием ультрафиолетовых лучей светятся по-разному.

В зависимости от цвета свечения и производится их сортировка. Этот принцип лег в основу способа сортировки оптических стекол, разработанного под руководством С. И. Вавилова.

Вынуждающее свечение при люминесцентном анализе обычно производят с помощью ртутно-кварцевых ламп, как наиболее мощных и испускающих наибольший поток ультрафиолетового излучения. Такие лампы обычно применяют с фильтрами из специального увиолевого стекла. Эти стекла с добавкой оксида никеля пропускают длинноволновое ультрафиолетовое излучение (300–400 нм), являющееся биологически безвредным. Схема установки для люминесцентного анализа приведена на рис. 55. Здесь 2 — ртутная лампа в кожухе 3, 1 — светофильтр, который пропускает на исследуемый препарат 4 только ультрафиолетовое излучение. Его люминесценцию наблюдают глазом или регистрируют специальной аппаратурой.

Научные исследования люминесценции ведутся весьма интенсивно.

Беседы о физике и технике - _55.jpg

Рис. 55. Схема установки для люминесцентного анализа в ультрафиолетовом свете

КАКОВЫ ПРАКТИЧЕСКИЕ ПРИМЕНЕНИЯ ЛЮМИНЕСЦЕНТНОГО АНАЛИЗА?

В производстве и в народном хозяйстве люминесцентный анализ применяют для исследования чистоты продуктов и обнаружения в них иногда ничтожных примесей.

В фармацевтической промышленности его используют для установления чистоты лекарственных веществ, в химической промышленности — для установления качества исходного сырья, в геологии — для определения состава горных пород, в пищевой промышленности — для определения качества продуктов, их зараженности и т. д.

35
{"b":"577202","o":1}