Литмир - Электронная Библиотека
Содержание  
A
A

Следует отметить, что существовавший в это время в стране подход к созданию систем амортизации базировался на допущении, при котором ракета или ракета совместно с контейнером рассматривалась как единое абсолютно жёсткое тело, соединённое с подвижным основанием (шахтой) при помощи упругих связей (амортизаторов). Это допущение приводило к тому, что все прочностные критерии сводились к допустимой перегрузке абсолютно жёсткого тела. Из остальных критериев оставался только один — допустимое перемещение транспортно-пускового контейнера относительно шахты. Для учёта других критериев предлагалось использовать нормированные коэффициенты динамичности.

В данном конкретном случае такой идеализированный подход не мог дать желаемого результата, так как не позволял учесть всё многообразие переменных параметров, влияющих на конечный результат, например упругость ракеты и контейнера. Таким образом, выбор расчётной схемы стал определяющим для решения задачи по выбору оптимальных параметров амортизации.

В.Н. Челомей оценил перспективность такого подхода к решению поставленной задачи и поддержал молодой коллектив в реализации теоретических исследований.

На основе метода сосредоточенных параметров были составлены расчётные схемы ракета плюс ТПК для анализа поперечных и продольных колебаний и разработаны программы, реализованные в виде связанного комплекса для ЭВМ, позволяющие исследовать нестационарные колебания сложных упругих систем с достаточно глубокой детализацией исследуемых объектов и максимальным приближением расчётной схемы к реальной конструкции.

Объём выполняемых расчётных работ был чрезвычайно большой. Надо сказать, что этим работам была дана «зелёная» улица по использованию всех ЭВМ предприятия. Расчёты проводились практически круглосуточно.

Проведённый цикл теоретических исследований позволил разработать принципиально новый подход к решению проблемы защиты ракетного комплекса с МБР УР-100У от наземного ядерного взрыва; создать и отработать расчётные схемы, позволяющие достаточно глубоко анализировать все особенности динамического поведения исследуемой сложной упругой системы «ракета — контейнер».

Так как разработанная в ЦКБМ методика расчёта защищённости ракеты УР-100У с ТПК была применена для решения подобных задач впервые, то необходимо было подтвердить её достоверность и оценить достаточность разработанной расчётной схемы для достижения требуемой точности расчётов. Такое подтверждение методики могло быть сделано только экспериментальным путём.

Для экспериментальных исследований стойкости системы «ракета УР- ШОУ — ТПК» в ЦКБМ на основании «способа В.Н. Челомея» был разработан и изготовлен ударный стенд, на который выдано авторское свидетельство и которому присвоено название «ударный стенд В.Н. Челомея». Была составлена расчётная схема этого стенда и проведены теоретические исследования по выбору его параметров (силовой рамы, системы подвески и т. д.).

Реализовать предложенную схему испытаний помогли уникальные возможности зала статических испытаний, который имеет высокую зону до 40 метров и размеры 36x36 метров, оборудованную силовым потолком и краном грузоподъёмностью 10 тонн. Созданный стенд и был размещён в этой зоне. Стенд состоял из двух основных систем: контейнера с ракетой, подвешенного вертикально к силовому потолку через параллелограммную подвеску, обеспечивающую плоскопараллельное движение; ударной фермы, закреплённой на контейнере в поясах крепления системы амортизации, обеспечивающей передачу нагрузок на контейнер при ударе. Баки ракеты были заполнены имитатором топлива.

Для нагружения система (контейнер с изделием и фермой) отводилась на заданное расстояние и удерживалась механизмом улавливания. При освобождении системы начиналось её свободное движение до удара фермы о силовую стенку. Этот удар моделировал натурное нагружение. После удара происходило движение системы в противоположном направлении. В предельно отклонённом положении система захватывалась ловителем через упругий амортизатор. Для анализа динамического поведения ракеты, контейнера и их элементов ударный стенд был оснащён необходимой системой измерения динамических параметров.

Экспериментальные исследования сейсмостойкости системы полностью подтвердили теоретические расчёты.

Зачётным ударным испытанием была подвергнута штатная ракета с ТПК, в конструкции которых все рекомендованные мероприятия были реализованы в серийном исполнении. После испытаний ракета была отправлена на полигон, где был произведён её успешный пуск.

Большой объём работ был проведён по обеспечению стойкости к сейсмоударному нагружению наземного комплекса КПА и оборудования. Результаты ударных испытаний полностью подтвердили идею В.Н. Челомея о возможности установки всех блоков наземного комплекса КПА и оборудования жёстко без всякой амортизации. Индивидуальная амортизация введена была только для двух блоков.

В дальнейшем задача обеспечения расчётно-экспериментального подтверждения защищённости баллистических ракет и наземного оборудования ракетных комплексов получила своё развитие в разработке принципиальной схемы, проектировании, изготовлении и вводе в эксплуатацию в 1983 году Универсального ударного стенда — УУС. На принцип действия и конструкцию УУС было получено авторское свидетельство № 231691 с приоритетом изобретения от 2 июля 1984 года. Авторы — В.Н. Челомей, Г.А. Иванько и А.В. Хромушкин.

Созданный стенд не имеет аналогов в России и за рубежом, превосходит все известные стенды по энергетическим характеристикам. В основной принцип его работы положены встречный разгон и торможение в заданной последовательности двух или трёх платформ, что позволяет получать форму импульса, близкую к синусоидальной, с обеспечением как одиночных, так и знакопеременных, состоящих из двух или трёх полуволн, ударных импульсов.

На универсальном ударном стенде была проведена отработка ударостойкости и защищённости многих изделий ракетно-космической техники.

Другим примером использования уникальных возможностей испытательной стендовой базы было проведение частотных испытаний полноразмерных изделий, таких как УР-100К, УР-100Н.

В 1966–1967 годах изделие УР-100К устанавливалось в верхней зоне зала статических испытаний вертикально на четырёх двухметровых силовых домкратах грузоподъёмностью 100 тонн каждый. Затем под него специалистами Филиала № 1 ЦКБМ подводились четыре электромеханических низкочастотных вибровозбудителя с толкающим усилием 2 тонны каждый. Для автоматической регистрации форм упругих колебаний в лаборатории динамических испытаний ЦКБМ В.Г. Гетманом и Н.П. Киселёвым была разработана оригинальная система регистрации, получившая положительный отзыв у специалистов ЦАГИ. Однако в дальнейшем эта система не получила широкого распространения из-за присущего ей недостатка — медленного опроса датчиков, что в условиях испытаний сложных и тяжёлых конструкций имеющимися тогда средствами возбуждения (в основном электромеханическими вибраторами) приводило к серьёзным затруднениям, так как требовало поддержания стабильного возбуждения в течение 20–30 секунд.

Позже необходимость проведения подобных испытаний возникла в 1978–1979 годах для изделия УР100Н. Полноразмерное изделие было привезено в статзал и установлено с помощью специального установщика в вертикальный стапель.

Необходимость проведения испытаний возникла в связи с выявленными проблемами продольной устойчивости на одном из режимов полёта изделия УР-100Н. Для срочного решения данной проблемы были мобилизованы научные и экспериментальные ресурсы страны: Академия наук, ЦНИИмаш, НИИТП и другие организации. В результате проблема была решена внедрением двух минимальных доработок, которые можно было выполнить даже на ракете, находящейся на боевом дежурстве в ШПУ. Это было введение динамических гасителей колебаний на первой ступени ракеты и специальных амортизаторов под гиростабилизированную платформу. Разработка и экспериментальная отработка амортизаторов специальной конструкции проводились специалистами НИИПМ и ЦКБМ. В результате напряжённой кропотливой работы практически в круглосуточном режиме, многочисленных испытаний, проведённых в виброзале ЦКБМ, была разработана и внедрена конструкция двухрежимного амортизатора, который менял свои упругие характеристики в результате «заштыривания» на определённом участке полёта.

53
{"b":"566184","o":1}