Замолк компрессор. Через несколько минут Бриджмен откупорил первую камеру.
Вместо сырого белка перед ним был вареный. Твердый, белый, упругий белок — как из крутого яйца!
Одну за другой ставит лаборант под поршень камеры облатки с белком. Раз за разом белок свертывается — при комнатной температуре. Все куриные яйца реагируют на давление однозначно.
На следующий день в лаборатории Бриджмена «готовят мясо». Точнее, подвергают высокому давлению мясной белок коллаген.
Результат получается точно таким же: белок свертывается.
Бриджмен: решает испытать органическое вещество искусственного происхождения, идет в химическую лабораторию, советуется с коллегами и возвращается к себе со склянкой бесцветной жидкости — изопрена.
Опять лязгают дверцы пресса, опятз? гудит компрессор, и после окончания опыта Бриджмен задумчиво раскатывает в пальцах упругий комок чего-то прозрачного, больше всего похожего на каучук. Он мог бы воскликнуть: «Синтетический полимер!», но термин этот еще не был в употреблении в 20-х годах. А в статье об удивительном поведении органических веществ под давлением Бриджмен написал так: «Природа этих процессов да сих пор совершенно не разгадана, но результаты опытов во всяком случае наводят на мысль, что давление во многих органических соединениях может вызвать необратимые реакции».
Разгадывать природу «этих процессов» — полимеризацию органических веществ под давлением — предстояло другим. А Бриджмен решил испытать под прессом фосфор (есть ли другое вещество, легче перестраивающее свою структуру?).
Белый фосфор прозрачен и мягок, похож на воск и почему-то светится в темноте; достаточно слегка нагреть его в любой пробирке, и он тут же превращается в темнокрасный порошок — вещество, довольно заурядное.
Может быть, под давлением произойдет…
К удивлению Бриджмена, красный фосфор ни во что иное превращаться под давлением не стал.
Тогда он принялся за белый.
Много раз белый фосфор превращался у него в красный, словно и не было никаких атмосфер. Но однажды, доведя давление до 12 000, Бриджмен извлек из камеры нечто новое: темные, почти черные крупинки с металлическим блеском, гораздо тяжелее, чем красный (не говоря уж про белый) фосфор. И не только блеском походили они на металл: черный фосфор хорошо проводил тепло и электричество.
Неметалл превратился в металл. Изменились не только свойства. Изменилась внутренняя структура вещества.
Над многими еще веществами колдовал потом Бриджмен. Пожалуй, самые неожиданные свойства обнаружило под давлением самое обычное и, вместе с тем, самое загадочное вещество — обыкновенная вода.
Бриджмен пробовал замораживать воду, одновременно сжимая ее. И вот в одном из опытов, когда температура в камере понизилась до — 20°, а давление повысилось почти до 2000 атм, вода превратилась в необыкновенный лед, который не всплывал, а тонул в воде. (Если бы такой лед получался сам по себе, в обычных условиях, на нашей планете, по всей вероятности, некому было бы ставить с ним опыты.)
Удивительными изменениями свойств вещества под высоким давлением интересовался в те времена, конечно, не только Бриджмен.
В 1930 г. в аспирантуру харьковского Физико-технического института (УФТИ) был принят тридцатилетний физик Леонид Федорович Верещагин. Тема работы аспиранта Верещагина: как будет вести себя твердое тело, подвергнутое давлению в десятки тысяч атмосфер. (К этому времени Бриджмен был уже профессором Гарвардского университета. Как раз в 1930 г. вышла его книга «Физика высоких давлений». Никаких ссылок на исследования по физике высоких давлений в СССР в ней, естественно, не имеется. Принятого теперь выражения «сверхвысокое давление» в те годы тоже еще не употребляли.) Для исследований Верещагину понадобились аппараты высокого давления. Их тоже не было, или они были плохими. И Верещагин, как до него Бриджмен, занялся аппаратами.
Проблем хватало. Совершенно ненадежен был в те времена главный аппарат высокого давления — тот самый «насос» с двойным поршнем, именуемый мультипликатором и работающий хорошо только один раз — при повторных сжатиях поршень выходил из строя. Даже для лаборатории это было не так уж хорошо, для завода же не годилось совершенно.
Потом — течи. Уже флорентийские академики, пытавшиеся сжимать воду еще в XVII в., знали, что вода внезапно перестает держаться в сосуде, где ее сдавливают, находит, где ей просочиться. Можно сказать, что одновременно с техникой высоких давлений родилась задача уплотнения, «пробки» и все достижения техники высоких давлений всегда были связаны с изобретением новых, все более хитроумных затычек, не дающих сжимаемому веществу ускользнуть из сосуда. (Собственно говоря, мультипликаторы потому и выходили из строя, что при каждом ходе поршня истиралось их уплотнение.)
Первым большим успехом Верещагина и было новое уплотнение, вернее новая его конструкция.
Заметим, что все это пока не имело ни малейшего отношения к алмазам. И что об их существовании аспирант Верещагин (потом — научный сотрудник, потом — профессор) ни тогда, ни в последующие лет двадцать, возможно, и не вспоминал.
По-иному складывалось дело и, главное, интерес к его возможному «окончательному» результату в Ленинграде, где в 30-е годы физики тоже начали усиленно заниматься высоким давлением. Обстановку, в которой это происходило, можно хорошо представить себе по воспоминаниям сотрудника Ленинградского физико-технического института Наума Моисеевича Рейнова.
«…Главной в довоенные годы была для меня работа по генератору и высоковольтным устройствам. В летнее время — экспедиции, изучение космических частиц и спектров солнца. К тому же еще — изобретательство. Казалось бы, хватит. Но тут появляется искуситель — Н. Н. Семенов. С 1931 г. он — директор Института химической физики, который помещается через квартал от физтеха. И Семенов говорит, что у него есть очень интересная работа — изучение влияния высоких давлений на протекание органических реакций. Исследования при таких давлениях должны дать очень интересные результаты для физики, для химии и для химической физики. Эти результаты можно будет использовать в промышленности…
Семенов говорил мягко, почти как сам Иоффе. И я согласился.
Исследовательскую группу возглавлял Юлий Борисович Харитон. В нее входили сотрудники его лаборатории, среди них Овсей Ильич Лейпунский и я…
Начали, конечно, с разработки аппаратуры сверхвысоких давлений. Приборов, работающих при давлении 10 — 20 тыс. атмосфер, у нас тогда не производилось. (Их вообще еще нигде не производили.) Конструирование установок для сверхвысоких давлений в предшествующие годы упиралось в целый ряд теоретических трудностей. Главная трудность была в том, как достичь равномерного давления в камере. Однако как раз в это время американский физик Бриджмен опубликовал работу, где излагал очень интересную схему аппарата — принципиально новую. Мы за эту схему сразу ухватились и вскоре создали установку для исследования газов при давлениях до 12 000 атмосфер и температурах до 450° С.
Затем разработали и построили установку, состоящую из большого пресса на 40 тонн, мультипликатора для предварительного сжатия жидкости до 3000 атмосфер и из деталей, позволяющих проводить опыты с газом.
Эта установка обладала оригинальными особенностями. Мы могли заполнять капилляр исследуемым газом при 150 атмосферах. При объеме капилляра в 3 см3 это позволяло производить опыты при давлениях до 20 000 атмосфер. Мы могли в этой установке отделять газ от жидкости и подогревать газ в процессе опыта при сверхвысоких давлениях. По стеклянному капилляру, в котором находился исследуемый газ, давление распределялось равномерно во всех направлениях, и поэтому работа проводилась в условиях полной безопасности.
Такой микрометодикой были научены при высоких давлениях реакции газов с твердыми телами, затем каталитические реакции на тонких проволочках, газовая коррозия металлов, растворимость газов в твердых телах, сжимаемость газов, теплоотдача и т. д.
Были проведены опыты по разложению метилового спирта при 8000 ат и 350° С. Опыты показали, что с повышением давления растет скорость образования диметилового эфира, увеличивается скорость разложения и выход метана и СO2 (вследствие реакции водорода и СО с метиловым спиртом).
При помощи той же микрометодики проведены были исследования поведения коллоидных растворов под давлением. Оказалось, что с повышением давления значительно ускоряется застудневание коллоидов гидрата окиси железа, но образование некоторых других гидратов замедляется…
Все это было удивительно интересно, мы очутились в мире новых, никому не известных явлений, происходящих в веществе…»