Руссо разлагает ацетилен в вольтовой дуге. Дельтер работает с четыреххлористым углеродом над раскаленным алюминием. Дюпар и Ковалев испаряют сероуглерод. Болтон разлагает ацетилен и светильный газ над амальгамами, а в раскаленный газ помещает для затравки — безусловно, основательная мысль! — маленький кристалл естественного алмаза. По его наблюдениям, кристалл увеличился.
Общему поветрию поддался и крупный английский ученый, член Лондонского королевского общества, а затем и его президент — Крукс, создатель газоразрядной трубки. Он пытается получить алмаз в стальной бомбе, начиненной взрывчаткой. Полагают, что температура при взрыве достигала 4000°, а давление — 8000 атм.
Сообщения об удавшемся синтезе алмаза сыпались как из рога изобилия — в отличие от алмазов, которые отнюдь не сыпались.
Это странное несоответствие взялся прояснить немецкий профессор Руфф. С редкой дотошностью он повторил все описанные в научных журналах опыты, особенно тщательно и со множеством ухищрений проверяя ту часть каждого из них, которая относилась уже не к получению желанных кристаллов, а к выделению прореагировавших веществ и опознанию. До Руффа никто не додумался, например, нагревать получаемые кристаллики в струе хлора до 1000°, чтобы удалить карбид кремния и корунд. Руфф повторяет во всех деталях эксперименты Хасслингера, Буаменю и многих других исследователей — и у него не получается никаких алмазов.
Он воспроизводит опыт Муассана и получает крохотные кристаллики — размером 0,05 мм. Они удовлетворяют пробам на удельный вес, на горение в кислороде, на желтое свечение в ультрафиолетовых лучах. Измерить коэффициент преломления света с такими кристалликами не удается — они слишком малы. Твердость их как будто больше, чем корунда.
И Руфф приходит к выводу: «Кроме Муассана, никому не удавалось получить искусственный алмаз. Возможно, что Муассан получил его, но это не доказано…».
Между тем поток сообщений об изготовлении алмазов продолжал расти, словно снежный ком. Патентные бюро не успевали анализировать новые предложения. Патенты на изготовление алмазов стали брать даже фирмы, считавшиеся вполне респектабельными. В начале 30-х годов (речь идет уже о XX в.) изобретение некоего Карабачека запатентовала германская «ИГ Фарбен». Как и положено, в патенте приводилась рецептура: взять 60 — 90% опилок, 5 — 25% доменного шлака, 5 — 15% аморфного углерода или графита, побольше, сколько влезет, твердой углекислоты и сжиженной окиси углерода, положить поименованные продукты в автоклав, сдавить до 5000 атм, нагреть до 900 — 1100°, еще раз повысить давление — до 15 000 атм, подождать полминуты; постепенно снизить давление и температуру до комнатной. Так и хочется добавить: «сахар и соль положить по вкусу»… Но это настоящий, зарегистрированный патент! В конце его деловитая принтера: «С целью образования больших алмазов эта операция повторяется несколько раз».
Непонятно €ыло только одно — почему «ИГ Фарбен» не завалила алмазами сперва Германию, а затем весь мир? Кстати говоря, примерно тот же вопрос можно было адресовать всем перечисленным выше счастливцам. Были «удачные опыты», были технологии, были патенты, не было только одного — искусственных алмазов. И то, что получалось у счастливых первоизобретателей, никогда не получалось у тех, кто пытался повторить их открытие. Как будто природа неуклонно следовала латинской поговорке: «Что можно Юпитеру, того нельзя быку».
Почему так?
Почему прошло полвека после Муассана — а дальше газетных и журнальных сенсаций дело не сдвинулось?
Разве неправильны были исходные позиции Муассана и Хрущова, видевших решение в высокой температуре и высоком давлении?
Нет, ни Муассан, ни Хрущов не обманывались — они правильно выбрали дорогу. Но они не знали, что по этой правильной дороге нужно прошагать гораздо дальше, чем позволяли средства, которыми они располагали. Они правильно определили качественную сторону явления, но не смогли определить количество этого качества — распространеннейший случай в истории науки и техники.
Вспомним хотя бы алхимиков: ведь они исходили из совершенно правильного — более того, гениально постигнутого ими единства всего материального мира. Все вещества построены из одних и тех же кирпичиков. Значит, можно железо и серу превратить в золото… А почему бы и нет? Но алхимики обманули надежды своих владык на быстрое и легкое обогащение, а науке надо было шагать вперед — к замене философского камня ускорителями — еще не одно столетие.
А Лавуазье — пример, куда более близкий нашему времени? С какой надеждой он взирал на полутораметровую линзу! «Если бы удалось добиться усовершенствования способов, применяемых до сих пор для приложения солнечных лучей к химическим опытам, были бы получены поразительные результаты, которые открыли бы ученым новое направление их деятельности и привели бы к совершенно неизвестному порядку вещей…» Разве не точно определено здесь капитальнейшее свойство всех веществ кардинально изменяться под воздействием высоких температур? Но что мог знать Лавуазье о совершенно неизвестном «порядке вещей», начинающемся при температурах в миллионы градусов?
Увидеть правильную дорогу, сделать по ней первые шаги, начать прокладывать путь, по которому потом (может быть, очень не скоро) пройдут к заветной цели потомки, — судьба многих выдающихся умов. В этом их счастье, но в этом же их трагедия. Ни Муассан, ни Хрущов, ни их последователи-ученые (о шарлатанах и авантюристах не стоит и говорить) не знали, до какого именно давления, до какой именно температуры нужно довести графит, чтобы он превратился в алмаз. Не знали они и некоторых чрезвычайно важных физических особенностей рождения алмаза. Не знали они, наконец, даже строения того, что хотели изготовить: любой из них был похож на человека, который взялся бы возводить кирпичный дом, впервые увидев его издали и услыхав, что, в принципе, его делают из обожженной глины.
Глава V
ДИАГРАММА ЛЕЙПУНСКОГО
Мы видим только то, что отражает свет. Предмет размером меньше длины световой волны увидеть нельзя, ибо он не может отразить ее. Длина световой волны — десятимиллионные доли сантиметра. Значит, увидеть обычную молекулу (размер которой немного меньше) — а тем более атом! — ни в какой оптический прибор в принципе невозможно.
Рентгеновы икс-лучи проникли сквозь промежутки между атомами твердых веществ, и физики, используя свойство интерференции — взаимного усиления и ослабления волн при наложении, заполучили первые «портреты» кристаллов с довольно ясными обозначениями атомов. Или, точнее, их мест в кристаллической решетке.
В 1913 г. англичане Уильям Генри Брэгг и его сын Уильям Лоуренс Брэгг предъявили ученому миру рентгенограмму с изображением внутреннего устройства алмаза.
Трудно было представить себе более простую конструкцию. Куб и тетраэдр — куб и трехгранная пирамида, каждая сторона которой есть равносторонний треугольник, — вот и все, что использовала природа, строя алмазный кристалл. Восемь атомов углерода в вершинах куба, шесть атомов по его сторонам — по одному в центре каждого квадрата. И еще четыре атома внутри куба — его как бы внутренний каркас. «Все продумано»: каждый атом соединен с четырьмя другими и находится на равном и очень близком расстоянии от каждого из них, что придает кристаллу колоссальную прочность. Отсюда твердость алмаза, его устойчивость к активнейшим химическим агентам. Отсюда же его огромная стойкость к нагреву.
Прошло еще несколько лет, и с помощью рентгеновских лучей были изготовлены портреты графита. Исследователи увидели фигуры, весьма далекие от классической красоты: конструкция оказалась похожей на слоеный пирог. В одном направлении атомы сидели совсем близко один к другому, в другом, перпендикулярном — далеко, в два с лишним раза дальше, чем в кристалле алмаза.
Отсюда — меньшая плотность (удельный вес графита много меньше) и несравнимо меньшая твердость. И гораздо большая податливость химическим воздействиям и нагреву.