Эти выкладки исследователей и послужили причиной событий, которые могли бы вполне стать сюжетом детективного фильма.
Логика виделась во всем этом очень простая: если в маленьком метеорите упрятаны алмазы на сотню каратов, то в большом метеорите… Если в маленьком метеорите нашлись мелкие алмазные крупинки, то в большом метеорите… Как же тут было не кинуться искать не медля самый большой метеорит, чтобы выковырять из него драгоценные камни покрупнее и тащить их в банк? И как же было не вспомнить об Америке, об Аризоне, о местности с мрачным названием Каньон Дьявола?
Воронка-кратер, известная здесь с незапамятных времен, колоссальна: диаметр ее больше километра (1200 — 1300 м), глубина достигает 180 м. Обломки метеоритного железа находили здесь во множестве еще аборигены-индейцы и, подобно новоурейским крестьянам, считали их святыней. В 1891 г. доктором А. Э. Футом было установлено метеоритное происхождение этих обломков. Вслед за тем филадельфийский профессор Кениг обнаружил в одном из найденных Футом образцов первые алмазные кристаллики…
Можно представить себе энтузиазм искателей сокровищ! Самый деятельный из них, инженер Д. М. Барринджер, основал через десять лет даже акционерное общество для извлечения гигантского метеорита. Предполагалось к тому же, что в метеоритном железе полно платины, — и в кратере было начато разведочное бурение. На глубине около полукилометра под дном воронки бур сломался в железистой породе. Но, если это и был метеорит, платины в нем не оказалось.
…Местность у Каньона Дьявола и поныне принадлежит сыновьям основателя акционерного общества по разработке метеорных сокровищ, само же общество давно распалось по финансовым причинам. Попытки использовать сигнал из космоса для непосредственного извлечения долларов из нового знания успеха не имели. Алмазы, найденные тогда же и находимые до сих пор в обломках тамошнего метеорита, ни для королевских корон, ни для банковских подвалов совершенно не подходили. Это были те же мельчайшие крупинки, что и в Петербурге; рассуждения Ерофеева и Лачинова о суммарном содержании алмазов в массе метеорита оказались ошибочными.
И тем не менее сигнал из космоса безусловно содержал полезную, как принято говорить теперь, информацию об алмазных кристаллах. Непригодная для игры на бирже, эта информация сослужила службу в игре совершенно иного рода.
Глава IV
АЛМАЗЫ ЕСТЬ, АЛМАЗОВ НЕТ
В начале 80-х годов XIX в. в научных журналах стали все чаще появляться статьи и краткие сообщения, подписанные трудно транскрибируемой буквами латинского алфавита фамилией Chroustschoff.
Вот некоторые из них.
В немецких журналах: «Искусственное получение кристаллического кварца» (1882); «Об искусственном получении кварца и тридимита» (1886); «Об искусственной магнезиальной слюде» (1887).
Во французском журнале: «О синтезе некоторых минералов» (1889).
В русском бюллетене: «Об искусственной роговой обманке» (1890)…
В эпоху бурного промышленного развития и резко возросшей добычи полезных ископаемых закономерности образования различных минералов в природных условиях не могли не интересовать ученых. Не имея возможности подсмотреть рождение минералов в природе, надо было идти сложным путем всех естественных наук — путем эксперимента в лаборатории. Сказать, как обычно об опытах: «в колбе» — было бы немалой условностью; сказать: in vitro — было бы во многих случаях уже явной художественной вольностью. Стекло вряд ли выдержало бы…
Первый искусственный минерал — известный каждому геологу и широко распространенный в природе железный блеск (гематит) приготовил еще в 20-х годах XIX в. выдающийся французский химик и физик Жозеф Луи Гей-Люссак, воздействуя паром на хлорное железо. Железный блеск, изготовленный в пробирке — здесь, вероятно, почти в буквальном смысле слова, — получился совершенно таким же, как в природе. И после Гей-Люссака еще несколько искусственных минералов синтезировали с помощью газообразных веществ при обыкновенном давлении и повышенной температуре. Основной прибор был чрезвычайно прост: огнеупорная обогревательная камера с отверстиями, иначе говоря — глиняная труба с дырками. В трубу насыпали твердые химические вещества, затем помещали ее в огонь и сквозь раскаленную трубу с раскаленным подопытным веществом продували другое вещество, газообразное. Так воспроизводился один из природных минералообразующих процессов.
Второй способ — такой же древний, идущий, быть может, еще от алхимиков, — кристаллизация из расплавов. Основные аппараты — печи и тигли. Начало было положено еще в конце XVII в., когда ученые, стремясь понять природу Земли, плавили камни. В расплавы горных пород опускали другие породы — и таким способом, воспроизводя контактные процессы, получили еще несколько минералов.
И, наконец, третий способ, самый трудный и самый важный — с помощью аппаратов высокого давления.
Очень небольшое отступление — о возникшем буквально на наших глазах явлении, именуемом чаще всего довольно нелепым словом «хобби».
За какой-нибудь десяток лет хобби стало чуть ли не обязательным признаком всякого мало-мальски известного человека. Не пытаясь анализировать сие явление обстоятельно, предположим только, что внеслужебные увлечения возникли, по-видимому, как реакция на машинизацию человеческой личности в условиях современного производства, требующего узкой специализации. Не в состоянии реализовать с достаточной полнотой свою личность в производственной, профессиональной деятельности, люди проявляют себя в деятельности непроизводственной, непрофессиональной, так сказать неофициально.
Но самое любопытное, возможно, заключается в том, что на самом деле научное хобби существовало испокон веков — только не как массовое явление. В самом деле: Ньютон был управляющим королевским монетным двором, Лавуазье — коммерсантом, Мендель — священником, Эйнштейн в пору создания теории относительности — чиновником патентного ведомства.
Если это случайности — то не многовато ли их? Не кроется ли за всем этим некий фундаментальный закон существования и развития человечества? Закон, который хорошо было бы иметь в виду при распределении общественных средств между прикладной и фундаментальной наукой, а также при сочинении учебных планов?
Человек — не машина. Человек никогда не согласится на роль придатка к машине, пусть даже и самой сложной, и нужной, и «умной». Человек несет в себе весь мир, и ему нужен весь мир, без этого он не может ощущать себя человеком. Но вернемся к делу…
Самые первые эксперименты с высоким давлением были проведены еще в XVII в. неугомонными флорентийцами в уже упоминавшейся на страницах этой книги академии Дель Чименто. Академики хотели узнать, сжимается вода или нет. Чтобы получить ответ на этот вопрос, они наполняли водой свинцовый шар, помещали его между зажимами пресса и сдавливали — до тех пор, пока капли воды не просачивались сквозь металл.
И потом еще долго — двести лет без малого — люди с великими ухищрениями пытались сдавливать жидкие, твердые и газообразные вещества все сильнее и сильнее, с поистине детским любопытством ожидая, что выйдет. Они смешивали эти вещества одно с другим, подогревали их или, наоборот, замораживали — и снова сдавливали.
Одни исследователи сдавливали вещества в громадных тисках. Другие брали пушки, наполняли их жерла различными веществами и опускали глубоко в море, чтобы использовать давление воды. Третьи предпочитали взрывы. Много было методов.
Чего они хотели добиться?
Все более высокое давление понадобилось людям для изучения свойств различных веществ в условиях все более высокого давления…
И второй вопрос: почему внимание людей привлекло именно давление?
Науку всегда интересовало поведение веществ в необычных условиях. И этот интерес нельзя было бы назвать полностью бескорыстным, как, впрочем, и любой вопрос «почему»: ответы нужны науке для ориентации и выбора пути. Вспомним, какие надежды возлагал Лавуазье на сверхвысокие температуры. А Каразин, например, возлагал большие надежды на сильный электрический ток. В своем сочинении «О возможности приложить электрическую силу верхних слоев атмосферы к потребностям человека» (1818) он пророчески писал: «Мы подойдем к великим средствам, которые сама природа употребляет для сложения и разложения тел…». Вспомним еще, пожалуй, что очень низкие температуры дали технике сверхпроводники, а очень низкие давления суть непременные условия рентгена и телевидения (в его нынешнем виде).