Литмир - Электронная Библиотека

Все это было дельно и полезно, все документально подтверждало принципиальную правоту Муассана, Хрущова, их единомышленников: без высокой температуры и высокого давления невозможно превратить графит в алмаз. Но без какой именно температуры? Без какого именно давления?

Сведения, которые должны были помочь ответить па эти вопросы, накапливались постепенно и довольно медленно.

В 1911 г. Вальтер Нернст измерил теплоемкость графита и алмаза. В 1912 г. была измерена теплота сгорания алмаза и графита; у алмаза она оказалась почти на 500 кал больше (по уточненным данным — та 200 кал/г-атом). В 1924 г. Лебо и Пикон выяснили, что при нагревании алмаза в вакууме до 1500° в течение часа никакого превращения в графит не происходит, что при 1800 — 1850° в графит превращаются четыре десятых подопытного алмаза, а при 2000° — уже девять десятых и притом не за час, а за полчаса.

Так, понемногу, приближалось время, когда уже могла появиться теория синтеза алмаза. И техника тоже приближалась к тому, чтобы согласиться считать эту проблем му не такой уж экзотической.

К началу XX в. статическое давление в несколько тысяч атмосфер стало более или менее обычным делом. А в свойствах веществ, подвергаемых таким давлениям, обнаружились такие интересные отклонения, нто опытами с высоким и сверхвысоким (больше 1000 атм) давлением занялись во всех промышленно развитых странах.

Под действием высоких давлений газы превращались в жидкости, жидкости — в твердые тела, а твердые тела становились еще более твердыми.

Обнаружилось также, что, приложив к реагирующим химическим веществам давление, можно во многих случаях резко ускорить реакцию. Более того, некоторые вещества, упорно не соединяющиеся в нормальных условиях, под давлением легко давали соединения.

Это явление представляло уже прямой практический интерес.

Одним из первых это понял профессор химии Фриц Габер из Высшего технического училища в городе Карлсруэ. Понял и сумел использовать: синтезировал аммиак из самых доступных, вездесущих веществ — воздуха и воды.

Со времен Лавуазье было известно, что воздух па четыре пятых состоит из азота, которому тот же Лавуазье дал его название, означающее «безжизненный». По инертности азот уступал только собственно инертным газам. Правда, в природе азот вступает в реакцию с кислородом воздуха во время грозы; природа подсказывала, что можно попытаться действовать так же — мощным электрическим разрядом.

Фрицу Габеру это представлялось не лучшим решением проблемы, и в 1904 г. он начал экспериментировать с водородом и азотом, подвергая их действию высоких давлений и температур в присутствии катализатора — железа. 500° и 200 атм оказались наиболее благоприятным сочетанием для образования аммиака (три атома водорода плюс один атом азота), и в 1913 г. в Германии начал работать первый в мире завод синтетического аммиака. Как нередко бывало и до, и после того, открытие использовали прежде всего в военных целях…

Однако аммиак все же нужен не только для изготовления взрывчатки, главным потребителем аммиака были и остаются заводы минеральных удобрений. Фиксация атмосферного азота, синтез аммиака — это было важнейшее практическое достижение физики и химии высоких давлений начала нашего века. Это была столь необходимая гарантия плодородия для всех цивилизованных стран, ибо доступные отныне азотные удобрения немедленно повышали урожайность пшеницы в три и в четыре раза. Любопытство флорентийских академиков XVII в. оборачивалось спустя три столетия хлебом насущным.

Здесь напрашивается, если относиться серьезно к самым крайним воззрениям в извечном споре о ценности наукй для человечества, «решающий» вопрос: зачем именно хотел Габер синтезировать свой аммиак, понимал ли он огромное значение этого и т. д. Читатель согласится, что суждения о таких вещах вообще довольно субъективны, через 70 лет — тем более. Доподлинно известно лишь то, что позже, в 1918 г., Фриц Габер сказал по этому поводу при вручении ему Нобелевской премии:

«Синтез аммиака, осуществленный в крупном масштабе, представляет собой реальный, быть может, наиболее реальный путь к удовлетворению важных народнохозяйственных нужд. Эта практическая польза не была предвзятой целью моих работ. Я не сомневался в том, что моя лабораторная работа даст не более чем научное выяснение основ и разработку опытных методов и что к этим результатам должно быть еще очень много приложено, чтобы обеспечить хозяйственные достижения в промышленном масштабе. Однако, с другой стороны, мне было бы трудно с такой глубиной изучать данный вопрос, если бы я не был убежден в хозяйственной необходимости химического успеха в этой области».

Следует признать вполне логичным, что практический успех принесли вначале давления в сотни, а не в тысячи атмосфер. Хотя бы потому, что поставить опыт при сотне атмосфер гораздо легче, чем при тысяче. Занималось этим больше людей, больше веществ вовлечено было в круг исследований, отсюда и больше была вероятность найти нечто практически полезное.

Однако наука вряд ли могла удовлетвориться одной только практической пользой. И нужен был человек, который ухватится за не очень понятную для большинства задачу — сделать удобные и надежные аппараты, способные поддерживать давление в тысячу и более атмосфер.

Эту задачу поставил перед собой в 30-х годах профессор физики Гарвардского университета Перси Уильям Бриджмен.

Тот же вопрос: думал ли он тогда об искусственных алмазах?

Позже, в 40-е годы, один английский физик обронил такую фразу: «В течение последних ста лет главным стимулом и основным побуждением к развитию техники высоких давлений было стремление синтезировать алмаз». Однако же никаких серьезных свидетельств тому, что профессор Бриджмен, рассчитывал сделать алмаз, яе существует. Достоверно одно — в 1908 г., получив докторскую степень, Бриджмен начал возиться с нехитрыми механизмами, довольно похожими на велосипедный насос.

Поршень, площадь которого примерно пятикопеечная монета, гонит в шину струйки воздуха не толще швейной иглы — примерно такой диаметр отверстия в ниппеле. Это — велосипедный насос, а у профессора Бриджмена давление, приложенное к широкой стороне ступенчатого поршня, повышалось на его другом, узком конце, входящем в узкий цилиндр. Если верхний поршень больше нижнего в 10 раз, то повысить давление можно тоже в 10 раз — за один прием. За, два — в сто раз, за три — в 1000 раз, за четыре… Просто!

Однако кажущаяся простота оборачивалась на деле непреодолимой сложностью конструкции. Как только число ступеней — цилиндров и поршней — превышало две, установка не желала работать.

И еще одна трудность — и тоже кардинальная — была с материалами, потому что подвергать вещества высокому давлению предстояло в каком-то замкнутом объеме, в какой-то камере, и ее надо было из чего-то сделать. А у самой прочной стали есть свой предел прочности, после которого сталь разорвется и камера высокого давления вместе с исследуемым, веществом разлетится по лаборатории, как разорвавшаяся бомба.

Прошло несколько лет, прежде чем Бриджмену удалось сконструировать аппарат, в котором на 1 см2 поверхности испытуемого вещества приходилось около 15 т.

Теперь началось самое интересное.

Доктор Бриджмен, которому в тот год исполнилось тридцать два, притащил в лабораторию дюжину сырых яиц. Это было самым началом его опытов со столь основательной «машиной» — десяток тысяч атмосфер! — поэтому, при желании, можно даже притянуть к характеристике названного предмета исследования (куриных яиц) латинское выражение ab ovo — от яйца, в смысле «с самого начала».

Полетела в ящик для мусора скорлупа, прозрачным яичным белком наполнили стальную облатку камеры высокого давления.

С лязгомг захлопнута тяжелая крышка пресса. Гудит мотор компрессора, нагнетающего масло в гидравлическую систему. Медленно ползет Стрелка манометра: 100, 200, 500, 1000, 2000, 3000, 4000, 5000, 6000… Стоп!

16
{"b":"566037","o":1}