Литмир - Электронная Библиотека

Итак, исследовательская группа, в которую входил Лейпунский, занималась изучением действия высокого давления на различные вещества и имела в своем распоряжении оборудование, на котором можно было доводить давление до 20000 атм при 2000° — весьма солидные по тем временам величины. Разве не самым естественным было бы попытаться использовать, это обстоятельство для изготовления алмаза? Наверное, нет. Им казалось, что правильнее было бы начать дело с другой стороны — с расчетов.

И вот, взявшись за эту работу, Овсей Ильич Лейпунский «вычислил» алмяз…

Он начал с того, с чего начинает каждый берущийся за новое дело, — с анализа всего, что было к тому времени сделано десятками, если не сотнями его предшественников.

Среди многих твердо установленных фактов, относящихся к делу, один был более всего огорчителен для изготовителей алмазов: при сгорании 1 г графита выделяется меньше тепла, чем при сгорании 1 г алмаза. Это значит, что на создание 1 г графита израсходовано природой меньше энергии, чем на создание 1 г алмаза. А это, в свою очередь, значит, что беспорядочному сонму углеродных атомов, разгоняемых энергией тепла, гораздо проще сложиться в графит, чем построиться в алмаз.

В любой точке пирамиды, горы или лестницы любой предмет менее устойчив, чем внизу, у основания, потому чт6 только внизу ему уже некуда деться, из любого же другого места он готов скатиться. Или, на языке физики: чем выше поднято тело, тем большая потенциальная энергия запасена в нем. Оно может лежать на пятом этаже как угодно долго, но раз вы единожды его туда затащили, то как только вы уберете то, что это тело удерживает, — в данном случае балки перекрытия и настил пола — оно немедленно само по себе окажется на следующем энергетическом уровне — на четвертом этаже… И так далее. Если убрать все преграды сразу, то названное тело не медля возвратится в свое первоначальное положение — туда, откуда оно было поднято, может быть, лет пять — десять назад, если это был, к примеру, старинный бабушкин рояль. Причем возвратится самопроизвольно: запасенная потенциальная энергия не убывает с течением времени; это весьма важно!

Место атомов углерода в графите можно уподобить нижнему, место в алмазе — верхнему положению рояля.

Чтобы они — атомы углерода — оказались наверху (алмаз), нужно затратить энергию. В любом из возможных положений по дороге к верхнему они сами по себе стремятся занять нижнее положение (быть графитом).

Для того чтобы вычислить, как заставить углеродные атомы подняться на этот энергетический верх, нужны были численные значения физических свойств углерода при разных давлениях и температурах. В том числе при тех, которые еще не были достигнуты. Лейпунский отыскал удобный (изящный, как утверждают математики) способ перебросить мостик расчета от известных значений к неизвестным, но совершенно необходимым для решения задачи. Это было первым успехом.

Вторым успехом было нахождение той температуры, при которой атомы углерода должны перестроиться из графитного строя в алмазный. Ее удалось вычислить, можно сказать, вообще без математики. Лейпунский задался вопросом, который теперь (после него, как всегда!) покажется само собой разумеющимся: не будет ли графит превращаться в алмаз при той самой температуре, при которой алмаз полнее всего превращается в графит? Разве вода замерзает не при тех же условиях, при которых лед тает? Расчет подтвердил и это простейшее предположение; еще один пример простоты сложных вещей.

И вот на письменном столе Лейпунского появился график — диаграмма состояния углерода при различных давлениях и температурах. Кривые показывали: для превращения графита в алмаз нужно, кроме двухтысячеградусного жара, давление не меньше 60 — 70 тыс. атм. Лучше всего что-нибудь около 100 тыс… В сотни раз больше, чем могло быть у тех, кто пытался изготовить алмаз. И Лейпунскому пришлось заканчивать свои расчеты довольно грустными словами в их адрес:

«…Выяснилось прискорбное обстоятельство: все попытки изготовления алмаза были сделаны в условиях, при которых графит является более устойчивой твердой фазой, чем алмаз».

Более того: «Большинство описанных опытов было произведено в то время, когда еще даже не было ясно, что устойчивее в земных условиях — графит или алмаз».

Ни у Каразина, ни у Муассана, ни у Хрущова, ни у многочисленных их последователей и авторов патентованных технологий не могло быть ничего похожего на 100 тыс. атм. А у Крукса, который устраивал взрывы в стальной бомбе, высокое давление было слишком непродолжительным, а значит, слишком мала (хоть и не равна нулю — заметим это!) была вероятность попасть в цель, которая раскрывается только на доли секунды…

Ну, а что же все-таки было у всех тех, кто объявлял, что алмаз сделан?

Кое у кого была, наверное, заурядная фикция. Например, у господина Карабачека и его шефов из «ИГ Фарбен». А честные ученые в конце XIX и начале XX в. — у них просто не было еще средств для точного определения вещества в тех микроскопических дозах, в которых они добывали свои кристаллы.

Чаще всего это были, очевидно, комбинации окислов и карбидов — титана, алюминия, кремния. И титан, и алюминий, и кремний обязательно присутствовали в исходных материалах или в самой аппаратуре исследователей. Комбинация окислов и карбидов могла получаться такой, что у нее оказывались «подходящими к алмазу» и удельный вес, и твердость (примерно как у корунда). И при сжигании карбидов получался углерод. Почти чистый…

Вот как было сказано об этом в 1939 г. у Лейпунского:

«…Чтобы быть уверенным в получении алмаза, кристаллизацию необходимо производить:

   1)  при таких давлениях, когда алмаз является более устойчивой фазой, чем графит;

   2)  при достаточно малых скоростях, чтобы не проявились преимущества графита как кинетически более вероятной фазы;

   3)  при таких температурах, когда возможны перестройки в кристаллической решетке, чтобы в случае образования графита последний мог перейти в алмаз.

Перестройки в решетке алмаза начинаются с 1700 — 1800°, и при этой температуре нет оснований ожидать, что решетка графита будет устойчивее. Поэтому температура в 2000° К является минимальной для получения алмаза из графита в твердой фазе, причем опыт должен производиться при таком давлении, когда алмаз при этой температуре устойчивее графита, т. е. при давлении порядка 60 000 ат.

Техника высоких давлений в настоящее время позволяет поддерживать в течение длительного времени давление 50 000 ат… Дальнейшее увеличение этого предела до 60 000 — 70 000 ат, по-видимому, осуществимо, хотя оно потребует очень большого труда при подборе соответствующих твердых сплавов. Нагрев графитовой массы до 2000° при большом давлении представляет меньшие трудности и может быть осуществлен изнутри. Но все же опыт при 60 000 — 70 000 ат является опытом будущего, хотя, может быть, и весьма недалекого.

Давление, необходимое для кристаллизации алмаза в области его устойчивости, может быть уменьшено, если удастся понизить температуру, при которой возможна кристаллизация. Известно, что наличие среды, являющейся растворителем для твердой фазы или вступающей с ней в нестойкие химические соединения, может значительно облегчить рекристаллизацию…

С принципиальной точки зрения, в железе можно выкристаллизовать алмазы (или вызвать рост внесенной затравки) при температуре 1500 — 1700° К, для чего потребуется давление порядка 45 000-50 000 ат.

Такой опыт находится в пределах возможностей техники сегодняшнего дня…

Алмаз может оказаться устойчивее графита и при небольших давлениях, если поверхностная энергия алмаза меньше поверхностной энергии графита. При этом условии для кристаллов очень малых размеров суммарная (т. е. объемная + поверхностная) энергия алмаза будет меньше, чем энергия графита, т. е. очень мелкие кристаллы алмаза будут устойчивее очень мелких кристаллов графита.

Однако эксперимент, в котором можно было бы реализовать это соотношение, следует проводить в условиях, когда исключена возможность рекристаллизации, а тогда ход кристаллизации будет определяться кинетическими соотношениями, а не термодинамическими…

В области, где графит более устойчив, чем алмаз, получение алмаза не является невозможным, так как во всяком случае алмаз термодинамически более устойчив, чем жидкий или газообразный углерод (при р>рнасыщ.). Здесь решающую роль должна играть кинетика образования зародышей и роста кристаллов алмаза и графита.

Если образование зародыша алмаза менее вероятно, чем образование зародыша графита, то очень существенно наличие готовой алмазной затравки.

Попытки кристаллизации в присутствии алмазной затравки из газовой фазы и из раствора производились при низкой температуре и дали отрицательный результат. Так, Руфф пытался наращивать алмаз из сплава при 800°, но при этом растворимость углерода в сплаве была ему неизвестна. Подобный опыт — в особенности кристаллизации из раствора — не представляется все же безнадежным, если взять хороший растворитель, например железо.

Трудность такого опыта заключается в надлежащем подборе температуры кристаллизации. Для возможности роста кристалла необходимо некоторое пересыщение раствора. При этом небольшое пересыщение для алмаза будет более значительным для графита, так как равновесная концентрация растворенного или газообразного углерода над графитом меньше, чем над алмазом, поскольку алмаз менее устойчив. А так как вероятность образования зародыша растет с величиной пересыщения, то пока идет медленный рост кристалла алмаза, на нем может образоваться зародыш графита, который направит дальнейшую кристаллизацию по пути образования графита.

Следовательно, температура алмаза должна быть такова, чтобы, с одной стороны, пересыщение раствора над ним было достаточно велико для обеспечения кристаллизации с нужной скоростью, а с другой стороны, чтобы пересыщение относительно графита было достаточно мало, чтобы во нремя роста алмаза не образовался зародыш графита.

Условия для эксперимента очень трудные, но, может быть, не безнадежные…

В той случае, когда вероятность образования зародышей алмаза сравнима с вероятностью образования зародышей графита, путем закалки можно получить небольшие кристаллики алмаза. Если в опытах Муассана были получены алмазы, то их количество составляло 10-4 по весу от имевшегося в железе графита (на основании данных Руффа). Эту цифру можно в данном случае рассматривать как примерную величину отношения вероятностей образования зародышей алмаза и графита.

Исходя из этой величины, мы могли бы ожидать, что при опытах с жидким углеродом в 10 г графита должен содержаться 1 мг алмаза. Однако анализ застывшего расплавленного угля не обнаружил наличия алмаза.

Впрочем, может быть, этот путь не безнадежен при осуществлении достаточно быстрой закалки. Уголь плавится при 4000° К, и при этой температуре уже само излучение вызывает быстрое охлаждение. Так, например, для капель диаметром в 1 см начальная скорость охлаждения имеет величину порядка 2500° в 1 сек и для охлаждения капли до 2500° К, т. е. до температуры, при которой рекристаллизация алмаза в графит уже затруднена, требуется около 2 сек. Дальнейшее увеличение скорости закалки представляет большие трудности, но тем не менее попытки в этом направлении следует рассматривать как один из возможных путей.

Наконец, известный интерес могут представлять попытки получения больших кристаллов из малых путем спекания, подобно тому, как изготовляют вольфрамовые стержни, изделия из твердых материалов и т. д. Так, например, Дельтер наблюдал спекание кусочков алмаза при 2000°…».

18
{"b":"566037","o":1}