Литмир - Электронная Библиотека
Содержание  
A
A

Я был потрясен до глубины души: объяснения Лауры показались мне весьма логичными. Термоядерные взрывы отвечали всем нашим требованиям. Соответствие процессу охлаждения, которое мы наблюдали во время вспышек, также приобретало смысл, если то, что мы видели, было мощным взрывом на нейтронной звезде. Кроме того, модель Лауры отлично объясняла интервал между вспышками, так как количество вещества, необходимое для взрыва, действительно должно накапливаться, на что требуется относительно много времени. При нормальной скорости аккреции создание критической массы занимало несколько часов, чем и объяснялся своего рода интервал, который мы обнаружили у многих источников вспышек.

У меня в рабочем кабинете стоит забавный радиоприемник, который всегда расстраивает моих посетителей. Он работает на солнечной батарее, и только тогда, когда она достаточно заряжена. Приемник потихоньку впитывает солнечный свет и медленно наполняется зарядом (зимой гораздо медленнее, чем летом), а затем каждые десять минут – иногда дольше, если погода плохая, – начинает играть, но лишь несколько секунд, потому что заряд электроэнергии быстро исчерпывается. Понимаете, к чему я веду? Накопление заряда в аккумуляторе похоже на накопление аккрецируемой материи на нейтронной звезде: когда ее становится достаточно, раздается взрыв, после чего все на какое-то время успокаивается.

Через несколько недель после визита Марачи, 2 марта 1976 года, в самый разгар «вспышечной лихорадки» мы обнаружили источник рентгеновского излучения, который я назвал MXB 1730-335 и который выдавал по несколько тысяч вспышек в день. Вспышки напоминали пулеметную очередь – многие из них следовали всего с шестисекундным интервалом! Боюсь, я вряд ли смогу в полной мере передать словами, насколько странным нам все это показалось. Этот источник, называемый сегодня Rapid Burster (быстрый барстер), был какой-то абсолютной аномалией и тут же в пух и прах разнес теорию Марачи. Во-первых, количество ядерного топлива, достаточное для термоядерного взрыва, по определению не может накапливаться на поверхности нейтронной звезды за шесть секунд. Кроме того, если эти вспышки – побочный продукт аккреции, то вследствие только ее одной мы должны были видеть мощный поток рентгеновского излучения, сильно превышающий энергию вспышек, но это было не так. Так что в начале марта 1976 года казалось, что замечательная термоядерная модель вспышек, предложенная Марачи, мертвее мертвого. В своей публикации, посвященной МХВ 1730-335, мы предположили, что вспышки вызваны «пульсирующей аккрецией» материи на нейтронной звезде. Иными словами, то, что в большинстве рентгеновских двойных представляет собой постоянный поток горячей материи с аккреционного диска на нейтронную звезду, в случае с Rapid Burster крайне нерегулярно.

Измеряя вспышки какое-то время, мы обнаружили, что чем больше вспышка, тем дольше приходится ждать следующую. Время ожидания могло составлять и шесть секунд, и целых восемь минут. Нечто подобное характерно для молнии. Мощный разряд при особенно сильном ударе молнии означает, что ждать, пока электрическое поле нарастит свой потенциал до такой степени, чтобы разрядиться снова, придется дольше.

Позднее в том же году откуда-то появился перевод статьи советских ученых, опубликованный в 1975 году и посвященный рентгеновским вспышкам; в ней рассказывалось об их обнаружении в 1971 году спутником «Космос-428». Мы были поражены: в СССР открыли рентгеновские вспышки, они опередили Запад! Однако по мере того, как я все больше и больше слышал об этих вспышках, мой скептицизм неуклонно рос. Уж очень сильно вспышки, выявленные советскими учеными, отличались от вспышек, которые я обнаружил с помощью SAS-3. В итоге я начал серьезно сомневаться в том, что эти вспышки действительно ими были. Я подозревал, что либо они носили техногенный характер, либо были каким-то странным, причудливым образом произведены вблизи Земли. Из-за «железного занавеса» узнать об этом больше не было никакой возможности. Но мне повезло: летом 1977 года меня пригласили принять участие в конференции весьма высокого уровня, организованной в Советском Союзе. На мероприятие были приглашены всего двенадцать советских и двенадцать американских астрофизиков. Там-то я и познакомился с всемирно известными учеными: Иосифом Шкловским, Роальдом Сагдеевым, Яковом Зельдовичем и Рашидом Сюняевым.

Я прочел доклад – ну да, угадали – о рентгеновских вспышках и встретился с авторами вышеупомянутой статьи. Они любезно предоставили мне данные о множестве вспышек – намного большем их числе, чем говорилось в статье 1975 года. И мне сразу стало понятно, что все это полная ерунда, но я не сказал им этого, по крайней мере тогда. Сначала я встретился с их руководителем, Роальдом Сагдеевым, который в то время возглавлял Научно-исследовательский институт космических исследований Академии наук СССР в Москве. Я объяснил ему, что хотел бы обсудить с ним нечто весьма деликатное. Я перечислил Сагдееву причины, по которым их вспышки никак не могли ими быть, и он сразу все понял. Я признался ему, что боялся сказать об этом открыто, чтобы у его коллег в условиях советского режима не возникло серьезных проблем. Сагдеев заверил меня, что это не так, и призвал встретиться с учеными и повторить все то, что я только что ему рассказал. Так я и сделал – и больше мы о советских рентгеновских вспышках никогда не слышали. Хотелось бы, кстати, добавить, что мы расстались друзьями с советскими коллегами.

Вам, возможно, интересно, что же все-таки было причиной советских вспышек. В то время я тоже этого не знал, но теперь знаю: они были техногенными, и догадайтесь, кто их создал? Они сами! Чуть позже я раскрою вам эту загадку. А сейчас давайте вернемся к настоящим рентгеновским вспышкам, природу которых мы все еще пытались выяснить. Когда рентгеновские лучи врезаются в аккреционный диск (или в звезду-донора) рентгеновской двойной звезды, диск и звезда нагреваются и на короткое время начинают светиться в оптической части спектра. Поскольку рентгеновскому излучению сначала нужно добраться до диска и звезды-донора, мы ожидали, что любая оптическая вспышка от диска достигнет нас через несколько секунд после рентгеновской. И мы отправились на охоту за скоординированными рентгеновскими и оптическими вспышками. Мой бывший аспирант Джефф Мак-Клинток и его сотрудники осуществили две первые оптические идентификации источников вспышек (MXB 1636-53 и MXB 1735-44) в 1977 году. Эти источники и стали нашими целями.

Понимаете теперь, как работает наука? Если модель верна, она просто обязана иметь наблюдаемые последствия. Летом 1977 года мы с моим коллегой и другом Джеффри Хоффманом организовали всемирное одновременное рентгеновское, радио-, оптическое и инфракрасное «наблюдение за вспышками». Это наблюдение само по себе было удивительным приключением. Нам предстояло уговорить астрономов, работающих в сорока четырех обсерваториях в четырнадцати странах мира, посвятить драгоценное время в течение наиболее благоприятных для исследований часов (так называемое «темное время», когда отсутствует Луна) наблюдению за одной не слишком яркой звездой, с которой, возможно, ровным счетом ничего не случится. То, что они приняли в этом участие, показывает, насколько для них было важно раскрыть тайну рентгеновских вспышек. За тридцать пять дней мы с помощью SAS-3 обнаружили 120 рентгеновских вспышек от источника MXB 1636-53, но на земле телескопы не наблюдали абсолютно ничего. Полное разочарование!

Вы можете подумать, что нам пришлось извиняться перед коллегами по всему миру, однако никто из них не увидел в этой ситуации ничего особенного. Таков уж он, мир науки!

Мы продолжали работу и на следующий год, используя только большие наземные телескопы. Джефф Хоффман уехал в Хьюстон, чтобы стать космонавтом, но в 1978 году ко мне присоединились мой аспирант Линн Комински и голландский астроном Йан ван Парадийс, приехавший в МТИ в сентябре 1977 года[28]. На этот раз мы выбрали в качестве объекта наблюдений MXB 1735-44. И в ночь на 2 июня 1978 года удача нам улыбнулась! Джош Гриндлей и его сотрудники (в том числе Мак-Клинток) обнаружили оптическую вспышку с помощью полутораметрового телескопа в Серро-Тололо, Чили, через несколько секунд после того, как мы в МТИ выявили рентгеновскую вспышку с использованием SAS-3. Фото нашей вспышки украсило обложку очередного номера журнала Nature, что было для нас большой честью. Эта работа в очередной раз подтвердила нашу убежденность в том, рентгеновские вспышки – продукт рентгеновских двойных систем.

вернуться

28

Я, конечно, не знал в то время, что мы с Йаном станем очень близкими друзьями и соавторами около 150 научных публикаций, вплоть до его безвременной кончины в 1999 году.

71
{"b":"561545","o":1}