Литмир - Электронная Библиотека
Содержание  
A
A

Боже, благослови астроспектроскопию: фиолетовое и красное смещение

Проще всего выяснить, является ли звезда двойной, особенно если она находится очень далеко, прибегнув к помощи спектроскопии и измерению доплеровского сдвига. На свете, наверное, нет более мощного астрофизического инструмента, чем спектроскоп, и более важного открытия в астрономии за последние несколько столетий, чем доплеровский сдвиг.

Вы уже знаете, что достаточно горячие небесные объекты излучают видимый свет (излучение черного тела). Разложение солнечного света на составные части так, как это делает призма, капель дождя, из которых состоит радуга (глава 5), показывает нам континуум цветов от красного на одном конце до фиолетового на другом, называемый спектром. Если разложить на части свет звезды, тоже увидишь спектр, но цвета в нем могут быть не равной насыщенности. Например, чем холоднее звезда, тем она (и ее спектр) краснее. Температура Бетельгейзе (в созвездии Орион) всего 2000 К – это самая красная звезда в небе. А температура Беллатрикс, тоже из Ориона, 28 000 К – это самая фиолетовая и яркая звезда в небе (ее часто называют «Звездой амазонок»).

При пристальном взгляде на звездный спектр видны узкие промежутки, где цвета урезаны или даже полностью отсутствуют; это линии поглощения. В спектре Солнца, например, тысячи таких линий. Они вызваны наличием многих различных элементов в атмосферах звезд. Атомы, как известно, состоят из ядер и электронов. Электроны не могут обладать произвольной энергией: у них дискретные энергетические уровни, и они не могут иметь энергию, промежуточную между этими уровнями. Иными словами, их энергии «квантованы» – этот термин лег в основу такой области физики, как квантовая механика.

У нейтрального водорода один электрон. Если в него ударяет фотон, электрон сможет перейти с одного энергетического уровня на более высокий, поглощая энергию фотона. Но из-за квантования уровней энергии электрона это не может произойти с фотонами любой энергии. Подойдут только фотоны с нужной энергией (с конкретной частотой и длиной волны), позволяющей электрону совершить квантовый скачок с одного уровня на другой. Данный процесс (так называемое резонансное поглощение) убивает фотоны и создает на этой частоте отсутствие цвета в спектре, которое мы называем линией поглощения.

В видимой части спектра звезды имеются четыре линии поглощения водорода (на точно известных длинах волн, или цветах). Большинство элементов могут произвести гораздо большее число линий, потому что у них намного больше электронов, чем у водорода. По сути, у каждого элемента есть собственная уникальная комбинация линий поглощения, нечто вроде отпечатка пальцев. Мы точно знаем это благодаря исследованиям в лаборатории. Таким образом, тщательное изучение линий поглощения в спектре звезды может нам сказать, какие элементы присутствуют в ее атмосфере.

Однако когда звезда удаляется от нас, явление, известное как доплеровский сдвиг, заставляет весь ее спектр (в том числе и линии поглощения) смещаться в сторону красной части спектра (красное смещение). Если же спектр, наоборот, сдвинут в фиолетовую сторону, значит, звезда движется по направлению к нам. Тщательно измерив величину сдвига в длине волны линий поглощения звезды, можно вычислить скорость ее движется по отношению к нам.

Например, если мы наблюдаем двойную систему, каждая звезда будет двигаться половину своей орбиты в нашу сторону и вторую половину от нас. А ее спутник – наоборот. Если обе звезды достаточно яркие, мы увидим линии поглощения, смещенные и в красную, и в фиолетовую стороны спектра. Это укажет нам на то, что мы наблюдаем двойную звезду. Но из-за орбитального движения звезд линии поглощения будут двигаться вдоль спектра. Скажем, если орбитальный период составляет двадцать лет, каждая линия поглощения сделает полный проход по спектру за двадцать лет (десять лет на красное смещение и десять лет на фиолетовое).

Когда мы видим только красное смещение (или только фиолетовое) линий поглощения, мы все равно знаем, что это двойная система, если линии двигаются по спектру туда-сюда; а замер времени, которое требуется для совершения линиями полного цикла, позволит нам определить орбитальный период звезды. В каких случаях такое бывает? Например, тогда, когда одна из звезд слишком тусклая, чтобы ее было видно с Земли в оптическом диапазоне.

А теперь вернемся к источникам рентгеновского излучения.

Шкловский и другие

Еще в 1967 году советский физик Иосиф Самуилович Шкловский предложил модель для Sco X-1. «По всем своим характеристикам данная модель соответствует нейтронной звезде в состоянии аккреции[27]… естественным и очень эффективным источником поставки газа для такой аккреции является поток газа, вытекающий из вторичного компонента тесной двойной системы в сторону основного компонента, представляющего собой нейтронную звезду».

Я понимаю, что эти строки вряд ли потрясут вас до глубины души. Этому отнюдь не способствует и то, что сформулированы они довольно сухим техническим языком астрофизики. Но именно так общаются между собой специалисты практически в любой сфере деятельности. Моя же цель в учебной аудитории и главная причина, по которой я написал эту книгу, – перевести поистине поразительные, новаторские, иногда даже революционные открытия моих коллег-физиков на язык, понятный умному, любознательному неспециалисту. Иными словами, моя цель – навести мосты между миром ученых и вашим миром. Очень многие предпочитают говорить о деле исключительно с коллегами, что усложняет большинству людей – даже тем, кто действительно хочет разобраться в нашей науке, – задачу вхождения в этот мир.

Итак, давайте возьмем идею Шкловского и посмотрим, что же он предлагал. Система двойной звезды состоит из нейтронной звезды и спутника, материя из которого перетекает к нейтронной звезде. Таким образом, нейтронная звезда находится «в состоянии аккреции» – иными словами, она аккрецируется (накапливается) за счет материи своего спутника, звезды-донора. Какая странная идея, не так ли?

Как показало время, Шкловский был прав. Но вот что самое любопытное: он говорил только о Sco X-1, и многие астрономы отнеслись к его идее не слишком серьезно. Впрочем, для теорий это не редкость. Я не думаю, что обижу кого-либо из своих коллег-теоретиков, если скажу, что в астрофизике подавляющее большинство теорий оказываются неверными. И вполне логично, что многие люди, работающие в сфере наблюдательной астрофизики, их игнорируют.

Как оказалось, аккрецирующие нейтронные звезды представляют собой фактически идеальную среду для выработки рентгеновского излучения. А как же мы узнали, что Шкловский прав?

Только в начале 1970-х годов астрономы признали и приняли идею о двойной природе некоторых рентгеновских источников. Впрочем, это не означало, что эти источники непременно являются аккрецирующими нейтронными звездами. Первым источником, открывшим нам свои тайны, стал Cyg Х-1, и он оказался одним из самых важных в рентгеновской астрономии. Cyg Х-1 был обнаружен во время исследовательского полета ракеты в 1964 году; это очень яркий и мощный источник рентгеновского излучения, поэтому он и сегодня привлекает к себе огромное внимание рентгеновских астрономов.

Затем, в 1971 году, радиоастрономы обнаружили радиоволны от Cyg Х-1. Их радиотелескопы точно определили, что Cyg Х-1 расположен на участке неба (в окне ошибки) в 350 квадратных угловых секунд, то есть почти в 20 раз меньшем, чем возможное окно ошибки при отслеживании рентгеновского излучения. Затем исследователи начали искать его оптический аналог. Они хотели увидеть в видимом свете звезду, которая испускала эти загадочные рентгеновские лучи.

В том же радиоокне ошибки находился ярко-фиолетовый сверхгигант, известный как HDE 226868. Учитывая его вид, астрономы могли сравнить его с другими очень похожими звездами и довольно точно оценить массу. В итоге сразу пять астрономов, в том числе всемирно известный Аллан Сандаж, пришли к выводу, что HDE 226868 – просто «обычный сверхгигант B0, без каких-либо особенностей», отказавшись от идеи, что это оптический аналог Cyg Х-1. Но другие (в те времена менее известные) представители оптической астрономии изучили звезду более внимательно и сделали ряд поистине эпохальных открытий.

вернуться

27

Аккреция (лат. accrētiō «приращение, увеличение») – процесс падения вещества на космическое тело из окружающего пространства. Прим. ред.

67
{"b":"561545","o":1}