Литмир - Электронная Библиотека
Содержание  
A
A

Теперь подумайте о том, как работает камертон. Если ударить по нему сильнее, число колебаний его зубцов в секунду не меняется, следовательно, частота производимых им звуковых волн остается неизменной. Именно поэтому он всегда играет ту же ноту. А вот амплитуда колебаний его зубцов при более сильном ударе возрастает. Это можно увидеть, если записать на пленку, как вы ударяете по камертону, а потом воспроизвести запись в замедленном движении. Вы увидите, как зубцы камертона колеблются, причем тем сильнее, чем сильнее вы по ним ударили. Поскольку амплитуда увеличивается, нота становится громче, но так как зубцы продолжают колебаться с той же частотой, она не меняется. Разве это не странно? Однако, если немного подумать, понимаешь, что тут все точно так же, как в маятнике (глава 3), период колебаний которого (то есть время одного полного колебания) не зависит от амплитуды.

Звуковые волны в космосе?

А сохраняются ли упомянутые выше взаимоотношения между характеристиками звука за пределами Земли? Вам когда-нибудь приходилось слышать, что в космосе нет звуков? То есть как бы энергично вы не стучали по клавишам пианино на поверхности Луны, оно не выдавало бы никаких звуков. Правда ли это? Да, на Луне нет атмосферы, там вместо нее вакуум. Так что вы вполне можете сделать вывод, что, к сожалению, даже самые зрелищные взрывы звезд или мощные столкновения галактик происходят в полной тишине. Можно также предположить, что даже Большой взрыв, первичный взрыв, приведший почти 14 миллиардов лет назад к созданию нашей Вселенной, случился в полной тишине. Но погодите минутку. Космос, как и львиная доля жизни как таковой, значительно запутаннее и сложнее, чем мы думали всего лишь несколько десятилетий назад.

Несмотря то что любой из нас, попытавшись дышать в космосе, быстро погибнет от недостатка кислорода, в действительности космическое пространство, даже глубокий космос, не является идеальным вакуумом. Термины вроде этого всегда относительны. Например, межзвездное и межгалактическое пространство в миллионы раз ближе к вакууму, чем самый идеальный вакуум, который мы можем создать на Земле. И тем не менее факт остается фактом: материя, парящая в космическом пространстве, имеет важные и идентифицируемые характеристики.

Большая ее часть называется плазмой: это ионизированные газы – газы, частично либо полностью состоящие из заряженных частиц, таких как ядра водорода (протоны) и электроны, различной плотности. Плазма присутствует в нашей Солнечной системе, и мы обычно называем ее солнечным ветром (явление, в изучении которого огромную роль сыграл Бруно Росси). Плазма также встречается в звездах, и между звездами в галактиках (где мы называем ее межзвездной средой), и даже между галактиками (в этом случае ее именуют межгалактической средой). Большинство астрофизиков считают, что более 99,9 процента всей наблюдаемой материи во Вселенной – это плазма.

Теперь подумайте вот о чем. Везде, где есть материя, можно получить волны давления (и, следовательно, звук), и они будут распространяться в пространстве. А поскольку плазма присутствует в космосе повсюду (в том числе в Солнечной системе), следовательно, там множество звуков, даже если мы и не способны их услышать. Наши уши слышат довольно широкий диапазон частот – фактически более чем в трех порядках величины, – но, к сожалению, природа не оснастила нас механизмами, позволяющими слышать музыку небесных сфер.

Позвольте привести один пример. Еще в 2003 году физики обнаружили рябь в сверхгорячем газе (плазме), окружающем сверхмассивную черную дыру в центре галактики в скоплении Персея, большом кластере из тысяч галактик, расположенном на расстоянии почти 250 миллионов световых лет от Земли. Эта рябь четко указывает на наличие звуковых волн, вызванных выделением большого количества энергии в момент поглощения материи черной дырой. (Черные дыры более подробно обсуждаются в главе 12.) Физики вычислили частоту волн и пришли к выводу, что это си-бемоль, но си-бемоль настолько низкая, что находится на 57 октав (примерно в 1017) ниже до первой октавы, частота которой составляет около 262 герц! Вы можете увидеть эти космические ряби на сайте по адресу: http://science.nasa.gov/science-news/science-at-nasa/2003/09sep_blackholesounds/.

А теперь вернемся к Большому взрыву. Если этот первичный взрыв, приведший к рождению нашей Вселенной, создал волны давления в самой первой материи – которая затем расширилась и впоследствии охладилась, создавая галактики, звезды и со временем планеты, – то мы должны видеть остатки этих звуковых волн. Физики рассчитали, насколько далеко друг от друга должны были находиться ряби ранней плазмы (около 500 тысяч световых лет) и какое расстояние должно разделять их сейчас, после того как наша Вселенная расширяется вот уже более 13 миллиардов лет. Получилось расстояние примерно в 500 миллионов световых лет.

В данное время проводятся два широкомасштабных исследования изображений и спектров звезд и галактик: Слоуновский цифровой обзор неба (SDSS – Sloan Digital Sky Survey) в Нью-Мексико и Исследование красного смещения в двухградусном поле (Twodegree Field (2dF) Galaxy Redshift Survey) в Австралии. Оба проекта искали ряби в распределении галактик и независимо друг от друга обнаружили… угадайте, что? Что «в настоящее время галактики с чуть большей вероятностью находятся на расстоянии 500 миллионов световых лет друг от друга, нежели на каком-либо другом расстоянии». Так что Большой взрыв произвел такой звук, длина волны которого на сегодня составляет около 500 миллионов световых лет, а частота почти на пятьдесят октав (1015) ниже звука, воспринимаемого человеческим ухом. Астроном Марк Уиттл немного поиграл с тем, что он называет акустикой Большого взрыва; и вы тоже можете получить немалое удовольствие, пройдя по ссылке: https://www.youtube.com/watch?v=KP9XihMvu0s. Там вы увидите и услышите, как Уиттл одновременно сжимает время (превращая 100 миллионов лет в 10 секунд) и искусственно поднимает высоту звука ранней Вселенной на пятьдесят октав выше, благодаря чему вы можете слушать «музыку» Большого взрыва.

Чудеса резонанса

Явление под названием «резонанс» делает возможным огромное количество вещей, которые в противном случае либо не могли бы существовать вовсе, либо были бы намного менее интересным. Это касается не только музыки, но и радио, часов, батутов, детских качелей, компьютеров, гудков поезда, церковных колоколов и МРТ, которую вам вполне могли делать, исследуя больное колено или плечо (знаете ли вы, что буква «Р» в этой аббревиатуре обозначает слово «резонансная» – «магнитно-резонансная томография»?).

Что же такое резонанс? Это довольно легко понять, вспомнив о качании ребенка на качелях. Раскачивая малыша, вы на интуитивном уровне знаете, что можете достичь довольно больших амплитуд в результате очень небольших усилий. Поскольку качели, по сути, не что иное, как маятник, и, следовательно, имеют четко определенную частоту (глава 3), то, если вы точно рассчитаете время своих толчков, синхронизируя их с частотой качели, совсем несильные дополнительные толчки будут оказывать значительный кумулятивный эффект на амплитуду качания качелей. Иными словами, ваш ребенок будет взлетать все выше и выше, а вы – всего лишь легонько толкать качели кончиками пальцев.

В этом случае вы пользуетесь преимуществами резонанса. Резонанс в физике представляет собой тенденцию чего-либо – будь то маятник, камертон, струна, винный бокал, барабанная кожа, стальная балка, атом, электрон, ядро или даже столб воздуха – сильнее вибрировать при определенных частотах. Мы называем их резонансными частотами (или частотами собственных колебаний).

31
{"b":"561545","o":1}