Литмир - Электронная Библиотека
Содержание  
A
A

В 2004 году, по-прежнему используя метод цефеид, астрономы измерили расстояние до галактики Андромеды, получив 2,51 ± 0,13 миллиона световых лет. В 2005-м другая группа ученых измерила это же расстояние с помощью метода двойных затменных звезд, получив результат 2,52 ± 0,14 миллиона световых лет, то есть около 24 квинтиллионов километров. Эти два измерения отлично согласуются друг с другом. Тем не менее погрешность составляет примерно 140 тысяч световых лет (около 1,3 × 1018 км). А ведь эта галактика по астрономическим стандартам – наш ближайший сосед. Представьте себе, какова тогда погрешность при измерении расстояний до других, более удаленных галактик.

Теперь вы понимаете, почему астрономы вечно охотятся за так называемыми стандартными свечами – объектами с известной светимостью. Они позволяют оценивать расстояния, применяя разные остроумные способы наподобие мерной рулетки для космоса. И они играли жизненно важную роль в создании того, что мы сегодня знаем как астрономическую лестницу расстояний.

Для измерения расстояний на первой ступеньке этой лестницы используется параллакс. Благодаря фантастически точным измерениям параллакса спутником Hipparcos мы можем с большой точностью измерять расстояния до объектов, удаленных от Земли на несколько тысяч световых лет. Далее идет следующая ступень – измерения с помощью цефеид, которые позволяют получить надежные оценки расстояний до объектов, удаленных от Земли до ста миллионов световых лет. На следующих ступеньках астрономы применяют ряд экзотических методов, слишком сложных с технической точки зрения, чтобы подробно их здесь описывать, многие из которых базируются на использовании стандартных свечей.

Задача измерения расстояний до небесных тел все больше и больше усложняется, ведь мы хотим измерять их все дальше и дальше от Земли. Это отчасти объясняется замечательным открытием, сделанным Эдвином Хабблом в 1925 году, согласно которому все галактики во Вселенной удаляются друг от друга. Данное открытие Хаббла – одно из самых шокирующих и значимых в астрономии и, возможно, во всей науке прошлого века; с ним может соперничать разве что теория естественного отбора Дарвина.

Хаббл заметил, что свет, излучаемый галактиками, указывает на явный сдвиг к менее энергетической, «красной» стороне спектра, где длина волн больше. В астрономии данное явление называется красным смещением. Чем оно больше, тем быстрее удаляется от нас галактика. На Земле этот эффект связан со звуком и известен как эффект Доплера; им объясняется, почему мы можем по звуку сирены без труда определить, например, приближается к нам машина скорой помощи или удаляется от нас (мы обсудим этот эффект более подробно в главе 13).

Хаббл обнаружил в отношении абсолютно всех галактик, красное смещение и расстояние до которых смог измерить, что чем дальше они находились, тем быстрее удалялись. Следовательно, Вселенная расширяется. Поистине величайшее открытие! Каждая галактика во Вселенной удаляется от любой другой галактики.

Это может привести к большой смысловой путанице в связи с расстояниями до галактик, удаленных на миллиарды световых лет. Что именно мы имеем в виду: расстояние в момент излучения света (скажем, 13 миллиардов лет назад) или расстояние в настоящий момент, когда объект за эти 13 миллиардов лет существенно отдалился от Земли? Один астроном скажет, что расстояние составляет около 13 миллиардов световых лет (это называется временем прохождения света), тогда как другой сообщит о расстоянии в 29 миллиардов световых лет до того же объекта (это называется сопутствующим расстоянием).

Выводы Хаббла с тех пор известны как закон Хаббла: скорость, с которой галактики удаляются от нас, прямо пропорциональна их расстоянию от нас. Чем дальше галактика, тем быстрее она мчится прочь.

Измерить скорость галактик было относительно легко – она непосредственно связана с величиной красного смещения. Но вот получить точные расстояния – совсем другое дело; это оказалось самой трудной частью задачи. Вы же помните, что при оценке расстояния до туманности Андромеды Хаббл ошибся в 2,5 раза. Он составил довольно простое уравнение v = H0D, где v – скорость данной галактики, D – расстояние до нее от нас и Н0 – константа, которую теперь принято называть постоянной Хаббла. По Хабблу она равна приблизительно 500 километров в секунду на мегапарсек (1 мегапарсек – 3,26 миллиона световых лет). Погрешность этой постоянной – около 10 процентов. Стало быть, по Хабблу, если галактика находится в 5 мегапарсеках от Земли, то ее скорость по отношению к нам составляет около 2500 километров в секунду.

Сегодня утверждение, что Вселенная быстро расширяется, не подлежит сомнению. Но открытие Хаббла этим не ограничивалось. Зная значение постоянной Хаббла, можно было отвести часы назад и определить время, прошедшее с момента Большого взрыва, и таким образом вычислить возраст Вселенной. Сам Хаббл оценивал его приблизительно в 2 миллиарда лет, что явно конфликтовало с данными о возрасте Земли, который, по подсчетам геологов – современников астронома, составлял никак не менее 3 миллиардов лет. Этот факт чрезвычайно беспокоил Хаббла, и небезосновательно. Конечно, он не знал о целом ряде совершенных им систематических ошибок. Мало того что он иногда путал разные типы переменных цефеид, он также ошибочно принимал облака газа, в которых формировались звезды, за яркие звезды из удаленных галактик.

Чтобы по достоинству оценить результаты восьмидесятилетнего прогресса в деле измерения расстояний до звезд, достаточно вспомнить историю самой постоянной Хаббла. Астрономы пытаются уточнить ее значение на протяжении вот уже почти столетия. Это привело не только к семикратному уменьшению данной константы, что резко увеличило размеры Вселенной, но и к изменению возраста Вселенной с исходных 2 миллиардов лет по Хабблу до почти 14 миллиардов лет по текущей оценке, точнее говоря, 13,75 ± 0,11 миллиарда лет. В конце концов, основываясь на дальнейших наблюдениях (частично с помощью потрясающего орбитального телескопа, носящего имя Хаббла), мы смогли прийти к согласию, что постоянная Хаббла составляет 70,4 ± 1,4 километра в секунду на мегапарсек. Погрешность – всего 2 процента, что действительно невероятно!

Просто подумайте об этом. Измерения по принципу параллакса, применяемые с 1838 года, послужили фундаментом для разработки новых инструментов и математических методов, позволяющих преодолеть миллиарды световых лет и достичь самого края наблюдаемой Вселенной.

Впрочем, несмотря на поистине потрясающий прогресс в решении подобных астрономических загадок, еще предстоит разгадать очень много тайн. Мы научились измерять долю темной материи и темной энергии во Вселенной, но понятия не имеем, что это такое. Мы знаем возраст Вселенной, но все еще задаемся вопросом, конечна ли она. Мы весьма точно измеряем гравитационное притяжение, электромагнетизм и ядерные силы, но понятия не имеем, будут ли они когда-либо объединены в единую теорию. У нас также нет ни малейшего представления о том, каковы шансы на существование какой-либо разумной жизни в нашей собственной или какой-либо другой галактике. Таким образом, нам еще предстоит долгий путь. Тем не менее просто удивительно, сколько ответов нам уже дали инструменты физики, как сильно они помогли астрономам достичь столь высокой степени точности измерений межзвездного пространства.

3. Движущиеся тела

Попробуйте провести один любопытный эксперимент. Встаньте на весы в ванной комнате – но не на те новомодные, которые установлены в кабинете врача, и не на те, что со стеклянным цифровым табло, на которое надо нажать пальцем ноги для включения, а на старые добрые обычные весы для ванной. Не имеет значения, будете вы в обуви или босиком (вам ни на кого не нужно производить впечатления), какие цифры покажут весы и насколько эти цифры вам понравятся. Встали? Теперь быстро поднимитесь на цыпочки и задержитесь в этом положении. Вы увидите, что весы, похоже, немного сошли с ума. Возможно, чтобы четко понять, что происходит, вам придется проделать это несколько раз, потому что все происходит довольно стремительно.

12
{"b":"561545","o":1}