Литмир - Электронная Библиотека
Содержание  
A
A

Идею о том, что все вещества пронизаны «электрической жидкостью», или «электрическим огнем», выдвинул Бенджамин Франклин – дипломат, государственный деятель, редактор, политический философ, изобретатель бифокальных очков, ласт, одометра и чугунной печки. Эта теория казалась очень убедительной, потому что она отлично объясняла результаты экспериментов коллег-естествоиспытателей. Англичанин Стивен Грей, например, продемонстрировал, что в металлической проволоке электричество проводится на большие расстояния, поэтому в идее обычно невидимой жидкости или огня (в конце концов, искры действительно напоминают огонь) имелся здравый смысл.

Франклин утверждал, что если вы получаете слишком много огня, то заряд будет положительным, а если мало, то отрицательным. Он также предложил использовать для зарядов такие условные обозначения, как плюс и минус, и определил, что, потерев стекло куском шерсти или шелка (заряд A), вы передаете ему избыток огня и, стало быть, такой заряд следует называть положительным.

Франклин не знал истинных причин возникновения электричества, но его идея электрической жидкости была блестящей и очень полезной, хотя и не во всем правильной. Ученый утверждал, что если перенести жидкость из одного вещества в другое, то вещество с избытком жидкости становится положительно заряженным, а то, из которого жидкость изъяли, отрицательно заряженным. Франклин открыл закон сохранения электрического заряда, который гласит, что на самом деле невозможно создать или избавиться от заряда. Создавая определенное количество положительного заряда, вы автоматически генерируете такое же количество отрицательного заряда. Электрический заряд – это игра с нулевым результатом; как говорят физики, заряд сохраняется.

Франклин понял – сегодня это известно всем, – что одноименные заряды (положительный и положительный, отрицательный и отрицательный) отталкиваются друг от друга, а разноименные (положительный и отрицательный) притягиваются. Его опыты показали, что чем больше «огня» в предметах и чем ближе они находятся друг к другу, тем мощнее действующие между ними силы, будь то притяжение или отталкивание. Он также определил, – подобно Грею и другим ученым, сделавшим это примерно в то же время, – что одни вещества проводят жидкость или огонь (теперь мы называем их проводниками), а другие нет, почему их и называют непроводниками, или изоляторами.

Франклину не удалось выяснить только одного – из чего же на самом деле состоит этот «огонь». И если это не огонь и не жидкость, то что тогда? И почему его, судя по всему, намного больше в зимнее время, по крайней мере там, где живу я, то есть на северо-востоке США, и где нас постоянно бьет током?

Прежде чем заглянуть внутрь атома, чтобы разобраться с природой электрического огня, нам нужно понять, что электричество пронизывает весь наш мир, причем гораздо сильнее, чем представлял Франклин и чем считает большинство из нас. Оно не только скрепляет львиную долю того, с чем мы ежедневно сталкиваемся, именно благодаря ему возможно все, что мы видим, знаем и делаем. Мы способны думать, чувствовать, размышлять и удивляться лишь потому, что электрические заряды ежесекундно перетекают между несчетными миллионами из примерно 100 миллиардов клеток в нашем мозгу. А дышать мы можем только потому, что электрические импульсы, генерируемые нейронами, заставляют разные мышцы нашей груди сокращаться и расслабляться в сложной симфонии движений. Например – опишу как можно проще, – по мере того как ваша диафрагма сжимается и опускается к грудной клетке, она увеличивает ее объем, втягивая воздух в легкие. А когда она расслабляется и расширяется, она выталкивает воздух из легких. Ни одно из этих движений не было бы возможно без бесчисленных крошечных электрических импульсов, постоянно рассылающих сообщения по всему телу, в данном случае приказывая мышцам сокращаться и прекращать это делать, когда эстафету принимают другие мышцы. Туда-сюда, туда-сюда – и так всю нашу жизнь.

А наши глаза видят только потому, что крошечные клетки-рецепторы сетчатки, палочки и колбочки, воспринимающие соответственно черно-белые и цветные образы, стимулируются падающими на них фотонами и «выстреливают» электрические сигналы через зрительные нервы в наш мозг. А мозг уже определяет, на что это мы смотрим: на подставку для фруктов или на небоскреб. Большинство наших автомобилей работают на бензине (хотя гибриды все больше используют электроэнергию), но мы не смогли бы использовать бензин ни в каком двигателе, если бы не электричество, поступающее через систему зажигания от аккумуляторной батареи в цилиндры, где электрические искры создают контролируемые взрывы, по много тысяч в минуту. Поскольку молекулы образуются благодаря электрическим силам, связывающим атомы, химические реакции – такие как сгорание бензина – без электричества были бы просто невозможны.

Благодаря электричеству лошади бегут, собаки сопят, а кошки потягиваются. Благодаря электричеству пленка для заворачивания продуктов мнется, липкий упаковочный скотч липнет сам к себе, а целлофановая упаковка не слетает с коробки конфет. Этот список, конечно же, далеко не исчерпывающий; на самом деле все, что мы только можем себе представить, существует благодаря электричеству. Как я уже сказал: без него мы не могли бы даже думать.

Это относится даже к вещам, по размерам меньше микроскопических клеток нашего организма. Любая материя на Земле состоит из атомов, и чтобы действительно разобраться, что такое электричество, мы должны заглянуть внутрь атома и кратко обсудить его части (пока что не все, потому что объяснение постепенно становится невероятно сложным, так что ограничимся лишь теми частями, которые нас интересуют на данном этапе).

Сами по себе атомы настолько малы, что увидеть их можно только с помощью самой мощной и сложной аппаратуры – сканирующих туннельных, атомно-силовых и просвечивающих электронных микроскопов. (Потрясающие изображения, полученные с помощью этих инструментов, можно найти в интернете по адресу: www.almaden.ibm.com/vis/stm/gallery.html.)

Если бы я взял 6,5 миллиарда атомов и выстроил их в ряд, один к одному, у меня получилась бы линия длиной около 60 сантиметров. Ядро же атома меньше самого атома почти в десять тысяч раз и состоит из положительно заряженных протонов и нейтронов. Последние, как понятно из их названия, электрически нейтральны; они вообще не имеют заряда. Протоны (от греческого слова «протос», то есть «первый») имеют примерно такую же массу, как нейтроны, – непостижимо малюсенькие, примерно две миллиардные от одной миллиардной одной миллиардной (2 × 10–27) килограмма. Поэтому независимо от того, сколько протонов и нейтронов в ядре – а в некоторых ядрах их более двухсот, – оно остается очень легким. И крошечным – около триллионной доли сантиметра в диаметре.

Однако для понимания природы электричества важнее всего тот факт, что протон заряжен положительно. Реальной, внутренней, причины для того, чтобы называть этот заряд положительным, нет, но со времен Франклина физики называют заряд, оставшийся на стеклянной палочке, натертой шелком, положительным, так что и протоны считаются положительно заряженными частицами.

Но, оказывается, еще важнее оставшаяся часть атома, состоящая из электронов – отрицательно заряженных частиц, которые облаком роятся вокруг ядра на некотором расстоянии, соответствующем субатомным стандартам. Если вы возьмете в руку мяч, представив себе, что это атомное ядро, то облако электронов будет находиться от него примерно в восьмистах метрах. Следовательно, очевидно, что большая часть атома представляет собой пустое пространство.

Отрицательный заряд электрона равен по величине положительному заряду протона. В результате атомы и молекулы, состоящие из одинакового количества протонов и электронов, электрически нейтральны. Когда же они не нейтральны, то есть в них наблюдается избыток либо дефицит электронов, мы называем их ионами. Плазма, как мы обсуждали в главе 6, представляет собой газы, частично либо полностью ионизированные. Большинство атомов и молекул, с которыми мы имеем дело на Земле, электрически нейтральны. В чистой воде при комнатной температуре ионизирована всего одна из 10 миллионов молекул.

37
{"b":"561545","o":1}