Литмир - Электронная Библиотека
Содержание  
A
A
Наша математическая вселенная. В поисках фундаментальной природы реальности - i_110.jpg

Рис. 13.2. Мы знаем, что Вселенная началась 14 млрд лет назад с Большого взрыва, затем она расширялась и остывала, а её частицы сливались в атомы, звёзды и галактики. Но мы не знаем, какова её окончательная судьба. Предлагаемые сценарии учитывают Большое замерзание (вечное расширение), Большой хлопок (обратный коллапс), Большой разрыв (расширение с бесконечной скоростью, разрывающее всё на части), Большое дробление (когда ткань пространства растягивается слишком сильно, в ней обнаруживается гибельная дискретная природа) и Смертельные пузыри (пространство «замерзает» внутри пузырей, которые расширяются со скоростью света).

Табл. 13.1. Будущее пространства в пяти сценариях космического Судного дня.

Наша математическая вселенная. В поисках фундаментальной природы реальности - i_111.png

А что с остальными 50 % моих денег? Я придержал бы их на случай, отличный от вышеперечисленного, поскольку считаю: люди должны быть скромнее и признать, что существуют фундаментальные вещи, которые мы ещё не понимаем. Я говорю о природе пространства, например. Замерзание, хлопок и разрыв — это варианты конца, предполагающие, что пространство само по себе устойчиво и бесконечно растяжимо.

Мы привыкли думать, что пространство — это скучная статическая сцена, на которой разворачивается космическая драма. Эйнштейн научил нас, что пространство — один из главных персонажей: оно может закручиваться в чёрные дыры, покрываться рябью гравитационных волн и растягиваться по мере расширения Вселенной. Не исключено даже, что оно может замерзать, переходя в другие фазы, подобно воде в стакане, и образуя при этом смертельные быстро расширяющиеся пузыри новой фазы (гл. 6). Мы также привыкли думать, что нельзя получить больше места, если не забрать его у кого-нибудь. Однако теория гравитации Эйнштейна говорит о прямо противоположном (гл. 3): дополнительный объём может быть получен в конкретной области пространства между галактиками без того, чтобы этот объём охватывал другие области — он остаётся между теми же галактиками. Более того, согласно теории Эйнштейна, растяжение пространства может продолжаться вечно, что позволяет Вселенной стремиться к бесконечному объёму — и в случае Большого замерзания, и в сценарии Большого разрыва. Похоже, это слишком хорошо, чтобы быть правдой.

Резиновый жгут гладкий, цельный, как пространство, но если его слишком растянуть, он лопнет. Почему? Потому что он состоит из атомов и при достаточном натяжении о себе даёт знать дискретная атомарная природа резины. Может ли быть так, что и пространство обладает некоего рода гранулярностью в масштабах слишком малых, чтобы мы это заметили? Математикам нравится модель пространства, представляющая его как идеализированный континуум без всякой гранулярности, и тогда разговор о сколь угодно малых расстояниях имеет смысл. Мы используем эту непрерывную модель пространства в большинстве физических курсов МТИ, но твёрдо ли мы уверены, что она верна? Конечно, нет! Есть множество опровергающих её данных, и мы обсуждали это в гл. 11. В случае простого непрерывного пространства необходимо выписать бесконечное количество десятичных цифр, просто чтобы задать точное расстояние между двумя произвольными точками. Но такой титан физики, как Джон Уилер, показал, что квантовые эффекты, вероятно, сделают бессмысленными любые десятичные цифры после 35-й, поскольку обычное наше представление о пространстве перестаёт работать на меньших масштабах и, возможно, должно быть заменено пенообразной структурой. Это немного напоминает масштабирование фотографии на дисплее компьютера, когда обнаруживается, что изображение в действительности имеет гранулярную структуру, подобно резиновому жгуту, и состоит из пикселов, которые не поддаются дальнейшему делению (рис. 11.3).

Поскольку эта фотография состоит из пикселов, она содержит конечное количество информации и её удобно передавать по интернету. Аналогично, имеется всё возрастающее количество данных, свидетельствующих в пользу того, что наблюдаемая Вселенная содержит лишь конечное количество информации, и это могло бы упростить понимание того, как природа вычисляет, что делать дальше. Голографический принцип (гл. 6) предполагает, что наша Вселенная содержит не более чем 10124 битов информации, что соответствует в среднем 10 терабайтам на каждый объём, в котором мог бы уместиться атом.

Меня беспокоит вот что. Из квантово-механического уравнения Шрёдингера (гл. 7) следует, что информация не может быть создана или уничтожена. Это значит, что количество гигабайтов на литр пространства убывает по мере расширения Вселенной. Согласно сценарию Большого замерзания (варианту космокалипсиса, наиболее популярному среди моих коллег-астрофизиков), это расширение продолжается вечно. Но что случится, когда плотность информации снизится до мегабайта на литр — меньше, чем в сотовом телефоне? Или байта на литр? О том, что тогда случится, мы не можем сказать ничего конкретного, пока не построена детальная модель, заменяющая современное непрерывное пространство. Но, я думаю, было бы разумно поставить на то, что в этом случае произойдёт нечто нехорошее, из-за чего законы физики постепенно изменятся, а наша форма жизни вымрет. Вот это я называю Большим дроблением.

А вот что беспокоит меня ещё сильнее. Простой расчёт показывает, что это случится в пределах нескольких миллиардов лет — даже раньше, чем Солнце исчерпает своё топливо и поглотит Землю. Наша лучшая теория, объясняющая, что сделало взрывом наш Большой взрыв — это теория инфляции (гл. 5), и она утверждает, что в самом начале Вселенная испытала невероятно быстрое растяжение пространства и некоторые области растянулись гораздо сильнее других. Если пространство может растягиваться лишь до некоторого предела, прежде чем случится Большое дробление, то главная часть объёма (а, следовательно, галактик, звёзд, планет и наблюдателей) окажется в областях, которые растянуты до предела и близки к дроблению.

На что будет похоже надвигающееся Большое дробление? Если гранулярность пространства растёт постепенно, то сначала беспорядок затронет структуры самого малого размера. Сначала мы заметим, что начинают изменяться некоторые свойства вещества, изучаемые ядерной физикой, например прежде стабильные атомы начнут испытывать радиоактивный распад. Затем начнёт изменяться атомная физика, внося беспорядок в химию и биологию. К счастью, Вселенная обеспечила нас гамма-всплесками, которые, подобно шахтёрской канарейке, служат удобной системой раннего предупреждения. Гамма-всплески — это катастрофические космические взрывы, дающие хорошо распознаваемые коротковолновые сигналы в гамма-диапазоне, которые способны пройти половину поперечника нашей Вселенной. В непрерывном пространстве электромагнитные волны независимо от своей длины движутся с одинаковой скоростью — со скоростью света, но в простейших вариантах гранулярного пространства более короткие волны движутся чуть медленнее. Согласно недавним наблюдениям, гамма-лучи с сильно различающимися длинами волн, соревнуясь друг с другом миллиарды лет движения сквозь космос от далёкого взрыва, прибыли к фотофинишу одновременно с точностью до сотой доли секунды. Если верить этому результату, то Большое дробление не случится ещё миллиарды лет, что идёт вразрез с предсказаниями из предыдущего абзаца.

На самом деле проблема ещё серьёзнее. Наше пространство не расширяется однородно: некоторые области, такие как наша Галактика, вовсе не расширяются. Можно поэтому представить себе обитающих в галактиках наблюдателей, которые будут долго и счастливо жить после того, как межгалактическое пространство подвергнется Большому дроблению, поскольку пагубные эффекты не будут проникать в галактики из отдалённых областей. Но этот сценарий спасает только наблюдателей, а не лежащую в основе теорию! В действительности расхождение между теорией и наблюдениями становится ещё серьёзнее: если повторить предыдущее рассуждение, то теперь оно предсказывает, что мы с наибольшей вероятностью должны обитать в галактике после того, как Большое дробление охватило большую часть окружающего пространства, так что отсутствие странных задержек в гамма-излучении объяснить ещё труднее.

97
{"b":"558000","o":1}