Таким образом, применение законов физики дало людям качественный и количественный ответ на один из главных вопросов наших предков: как и когда возникла Солнечная система?
Как появились галактики?
Итак, мы отодвинули границу нашего знания на 4,5 млрд лет в прошлое. Тогда Солнечная система образовалась в результате гравитационного коллапса гигантского молекулярного облака. Но одноклассник моего сына Филиппа спрашивал: откуда взялось это гигантское молекулярное облако?
Образование Галактики
Вооружённые телескопами, карандашами и компьютерами астрономы нашли убедительный ответ и на эту загадку, хотя ряд важных пробелов ещё предстоит восполнить. По сути, схватка гравитации и давления, в ходе которой сформировалась пиццеобразная Солнечная система, повторяется в гораздо большем масштабе: сжимается куда более крупная заполненная газом область совокупной массой в миллионы или даже триллионы масс Солнца. Такой коллапс не приводит к образованию увеличенной версии Солнечной системы с мегазвездой, окружённой мегапланетами. Вместо этого происходит фрагментация на огромное число газовых облаков меньшего размера, из которых образуются отдельные планетные системы: так рождается галактика. Солнечная система — одна из сотен миллиардов в одной из этих пиццеобразных галактик, которая называется Млечным Путём. Мы находимся примерно на полпути от его центра (рис. 2.2), вокруг которого совершаем оборот за пару сотен миллионов лет.
Иногда галактики сталкиваются друг с другом. Эти космические дорожно-транспортные происшествия не так страшны, как может показаться, поскольку звёзды, как правило, проходят друг мимо друга. В итоге галактики сливаются, а большинство их звёзд объединяется в новую, более крупную галактику. Как Млечный Путь, так и наша ближайшая крупная соседка, Туманность Андромеды, — пиццеобразные галактики, которые называют спиральными из-за восхитительных рукавов (рис. 2.2). Когда сталкиваются две спиральные галактики, результат сначала кажется беспорядочным, а затем формируется округлая капля из звёзд, называемая эллиптической галактикой. Такая судьба ждёт и нас, поскольку через несколько миллиардов лет нам предстоит столкновение с Туманностью Андромеды. Неизвестно, будут ли наши потомки называть свой дом Млечномедой, но мы твёрдо знаем, что это будет эллиптическая галактика: телескопы позволили увидеть множество подобных столкновений на разных стадиях, и результаты этих наблюдений вполне согласуются с теоретическими предсказаниями.
Если галактики образовались за счёт слияния более мелких галактик, насколько малы были те, первоначальные? Эти поиски были темой первого исследовательского проекта, который меня по-настоящему озадачил. Ключевой частью моих вычислений было определение того, как химические реакции в газе порождают молекулы, способные приводить к снижению давления за счёт излучения тепловой энергии. Но каждый раз, когда мне казалось, что вычисления окончены, я обнаруживал, что применяемые мной формулы молекул содержат серьёзную ошибку, делающую все расчёты неверными и заставляющие начать всё сначала. Через четыре года после того, как научный руководитель Джо Силк впервые предложил мне этим заняться, я был настолько раздосадован, что подумывал заказать футболку с надписью «Я ненавижу молекулы» и изображением молекулы водорода, моего главного врага, перечёркнутой толстой красной линией, как на знаке «Курение запрещено». Но затем удача мне улыбнулась: перебравшись в Мюнхен на позицию постдока, я встретил студента по имени Том Абель, который только что завершил поистине энциклопедические расчёты всех молекулярных формул, которые мне требовались. Он присоединился к нашей команде в качестве соавтора, и 24 часа спустя дело было сделано. Мы предсказывали, что масса самых первых галактик составляла «всего» около 1 млн масс Солнца. Нам повезло: этот результат в основном согласуется с гораздо более сложными компьютерными моделями, которыми профессор Том занимается сейчас в Стэнфорде.
Возможно, наша Вселенная расширяется
Самое грандиозное шоу на Земле, в рамках которого поколения живых организмов рождаются, взаимодействуют и умирают, началось около 4,5 млрд лет назад. Кроме того, мы открыли, что это часть ещё более грандиозного спектакля, в котором поколения галактик рождаются, взаимодействуют и умирают в космической «экосистеме». Так вот, не может ли быть в этой постановке третьего уровня, на котором могут рождаться и умирать целые вселенные? В частности, нет ли признаков того, что наша Вселенная имела начало во времени? Если да, как и когда это произошло?
Почему галактики не падают? С ответа на этот вопрос начинается наш следующий рывок, отодвигающий предел знания ещё дальше в прошлое. Мы видели, что Луна не падает на Землю, потому что обращается вокруг неё с высокой скоростью. Вселенная во всех направлениях населена галактиками, и очевидно, что для них это объяснение не подходит. Не все они обращаются вокруг нас. И если Вселенная вечна и в целом статична (то есть далёкие галактики не движутся быстро), почему же они не упадут на нас, как случилось бы с Луной, если бы она вдруг остановилась?
Конечно, во времена Ньютона никто не знал о галактиках. Но если, подобно Джордано Бруно, представить себе бесконечную статическую Вселенную, однородно заполненную звёздами, то должно иметься хотя бы примерное объяснение, позволяющее не волноваться, что они на нас упадут. Законы Ньютона утверждают, что к каждой звезде приложена большая (в действительности бесконечная) сила гравитации, действующая в равной мере во всех направлениях, и можно заключить, что эти противоположно направленные силы погасят друг друга, оставив все звёзды в неподвижности.
В 1915 году это объяснение было опровергнуто новой теорией гравитации — общей теорией относительности.[7] Её автор Альберт Эйнштейн понимал, что статическая бесконечная Вселенная, однородно заполненная материей, не укладывается в новые уравнения гравитации. И как же он поступил? Он, безусловно, усвоил главный урок Ньютона: надо смело экстраполировать свои уравнения и представить, какого рода Вселенная будет им удовлетворять, а затем выяснить, какие наблюдения позволяют проверить, действительно ли мы живём в такой Вселенной. По иронии судьбы, даже Эйнштейн, один из самых изобретательных учёных всех времён, чей принцип состоял в том, чтобы подвергать сомнению самые несомненные допущения и авторитеты, не решился усомниться в собственном авторитете и собственной уверенности в том, что мы живём в вечной, неизменной Вселенной. Вместо этого он совершил, как впоследствии сам признавался, свою величайшую ошибку: изменил уравнения, добавив дополнительный член, позволяющий Вселенной быть статической и вечной. Двойная ирония состоит в том, что сегодня этот дополнительный член, похоже, вновь появился в уравнениях в форме космической тёмной энергии, которую мы ещё обсудим, но на этот раз он имеет иной смысл и не делает нашу Вселенную статической.
Человеком, которому, наконец, хватило смелости и способностей, чтобы довериться уравнениям Эйнштейна, оказался русский физик и математик Александр Фридман. Он решил их в самом общем случае для Вселенной, однородно заполненной материей, и обнаружил нечто шокирующее: большинство решений не было статическим, а изменялось во времени! Статическое решение Эйнштейна было не просто исключением из обычного поведения, но и являлось неустойчивым: почти статическая Вселенная не могла оставаться в таком состоянии длительное время. Если Ньютон показал, что естественное состояние Солнечной системы — пребывать в движении (Земля и Луна просто не могут вечно оставаться в неподвижности), то Фридман продемонстрировал, что естественное состояние нашей Вселенной — движение.
О каком именно движении шла речь? Фридман открыл, что самым естественным состоянием для Вселенной является расширение или сжатие. Если она расширяется, то все объекты внутри неё отдаляются друг от друга, как шоколадные крошки на поднимающемся кексе (рис. 3.2). В этом случае в прошлом все они должны были располагаться ближе друг к другу. На самом деле в простейшем фридмановском решении для расширяющейся Вселенной в прошлом есть определённый момент, когда всё, что мы наблюдаем сегодня, находилось в одном и том же месте, создавая там бесконечную плотность. Иными словами, у нашей Вселенной есть начало, и её рождение представляло собой взрыв чего-то бесконечно плотного. Большой взрыв.