Литмир - Электронная Библиотека
Содержание  
A
A

Ученые, получившие эти данные, попытались представить себе, каков был этот древний жаркий мир. Большинство морских организмов погибают при температуре воды выше 40 °C, а именно такой показатель был обнаружен. При такой температуре и выше практически прекращается фотосинтез. В таком мире зона тропиков должна быть необитаема, и жизнь главным образом сосредоточена на высоких широтах. Даже в средних широтах обитали очень немногие сухопутные животные. При такой жаре воздух был насыщен водяными парами, а тропики оставались влажными круглый год. Судя по всему, это была влажная, но пустыня — не было никакой растительности.

Более точная современная геохронология показывает, что период высоких температур продолжался по крайней мере первые три миллиона лет триаса. Возможно, температуры доходили и до более высоких показателей, и максимум пришелся на период около 247 млн лет назад, когда температура оказалась самой высокой за всю историю существования животных. Сэм Эпстайн был прав. И мы были правы[180]. Ошиблись мы только в одном — не надо было отказываться от публикации результатов своих работ.

Пермское вымирание явилось для растений и животных одной из самых ужасных катастроф в истории развития жизни на нашей планете. А вот с точки зрения микроорганизмов, особенно любителей серы, это событие оказалось чем-то вроде возвращения в рай. С наших же позиций пермское вымирание представляется приблизительным повторением произошедшего в конце девонского периода, то есть первого из так называемых парниковых массовых вымираний. Еще многому суждено было свершиться: и в конце триаса, и в юрский, и в меловой периоды, а последнее парниковое вымирание произошло вообще в конце палеоцена, всего 60 млн лет назад, но с пермским массовым вымиранием не сравнится ни одно из событий подобного рода, в том числе и по масштабам разнообразия форм жизни, которые появились после.

Пермское массовое вымирание открыло дорогу в мир многим новым существам, но для нас особенно интересны два совершенно новых на тот момент истории эволюционных направления — млекопитающие и динозавры, которые к концу триаса процветали и развивались. Это были чрезвычайно важные эволюционные линии развития жизни (редко какая эволюционная новинка дает название целым геологическим интервалам, как в случае с эрой динозавров), но появились они относительно поздно и в триасовый период оставались маленькими по размерам (особенно млекопитающие, которые редко были крупнее крысы), а также являлись малыми группами как по разнообразию видов, так и по численности. Эра динозавров началась не ранее юрского периода, а млекопитающим пришлось ждать своей эры до самого кайнозоя.

Задолго до появления динозавров и млекопитающих на эволюционной сцене выступали другие животные и растения триасового периода. Это были как уже существующие, но развившие новые черты в процессе эволюции таксономические группы, так и совершенно до того невиданные существа, обладающие новыми формами, кардинально отличными от форм палеозойской эры. Именно это смешение старого и нового сделало триас перекрестком эпох. В некотором отношении данный период можно сравнить с кембрием — множество новых морфологических типов наводнили экологические ниши, опустошенные недавним вымиранием (в тот раз это были представители вендобионты). И как во времена кембрийского взрыва, многие новинки эволюции оказались весьма недолговечными и погибли, не выдержав испытаний естественного отбора. Столь интенсивного появления новых форм, как в кембрии и триасе, больше ни в один из периодов не происходило. Тому, как кажется, есть две причины. Во-первых, пермское вымирание настолько опустошило различные среды обитания, что почти любой тип организмов мог иметь шанс выжить и развиваться, по крайней мере, некоторое время. Однако существует и вторая причина, которая может оказаться более значимой для всего, что происходило в триасовый период.

Едва оправившись от потерь пермского массового вымирания, раннетриасовый мир оказался почти необитаем. Кроме того, все исследовательские модели говорят о том, что уровень кислорода в тот период был значительно ниже современного. В предыдущих главах мы продемонстрировали, что низкие уровни кислорода, особенно во времена, следующие за массовыми вымираниями, стимулируют развитие новых строений тел. Два этих фактора — малая заселенность сред обитания и низкий уровень кислорода — в совокупности представляли собой благоприятные условия для бурного развития новых морфологических типов, то есть возникла ситуация, подобная обстоятельствам кембрийского взрыва. На этом основании мы полагаем, что вполне правомерно видеть сходство кембрия и триаса, и поэтому называем события соответствующего периода триасовым взрывом.

Триасовый период был временем развития широчайшего разнообразия в воде и на суше. В океане, например, место вымерших плеченогих заняли многие новые группы двустворчатых моллюсков, а различные аммоноидеи и наутилоиды наполнили моря новыми видами хищников. Четверть всех когда-либо существовавших аммонитов обнаружена именно в отложениях триасового периода — интервал, составляющий 10 % всего периода существования на Земле этих организмов. Океаны наполнились аммонитами, своей формой полностью не похожими на своих палеозойских предков, — почему бы нет, если эти существа показывали исключительную для беспозвоночных степень приспособленности к условиям дефицита кислорода. В то же время появились каменистые кораллы — новый отряд — и начали строить свои рифы[181]. Многие сухопутные пресмыкающиеся вернулись обратно в море. При этом именно на суше произошли самые замечательные изменения и эволюционные эксперименты в морфологии организмов. Никогда до и после мир не видал таких разнообразных анатомических вариантов на суше, как в тот период. Некоторые существовали еще в перми — терапсиды. Они пережили пермское вымирание, снова стали развиваться в начале триаса и теперь соперничали с архозаврами за господство на суше, впрочем совсем недолго. Конкуренцию терапсидам составляли многие рептилии. От звероподобных рептилий до ящериц, от самых ранних млекопитающих до настоящих млекопитающих — триас был настоящей экспериментальной лабораторией эволюции.

На первый взгляд, млекопитающие неизбежно должны были обогнать рептилий в эволюционной гонке. В конце концов, к тому моменту многие звероподобные рептилии уже были теплокровными, вероятно, способными (как сегодня) более эффективно, чем яйцекладущие динозавры, заботиться о потомстве; зубы млекопитающих (благодаря которым они потом все же стали господствующей группой организмов) приспособились к любой пище — семенам, траве, мясу. Но они все-таки проиграли в первом раунде. Первая эра млекопитающих закончилась их вымиранием, но на смену ей пришла вторая эра — с совершенно иными формами животных.

Сегодня работа палеонтологов во многом стала легче благодаря компьютерам. Новые революционные возможности в обмене информацией, морфологической характеризации, анализе изображений и в поиске источников позволяют значительно расширить исследование. Теперь доступны огромные базы данных, не нужно больше ходить по музеям, собирая данные, или глядеть в микроскоп, измеряя образцы чуть ли не вручную, — почти все новые данные, помогающие нам создать новую историю развития жизни на Земле, поступают от больших групп исследователей, которые вводят все новые сведения в машинные системы. Компьютеры делают для нас огромную работу, а мы получаем возможность по-новому взглянуть на изучаемый предмет.

Давайте взглянем на недавние результаты работы наших коллег из Мюнхенского университета, которые исследовали размеры позвоночных животных триаса, обитавших на суше.

В ходе работы этой исследовательской группы было обнаружено, что в раннем триасе на обедневшей после пермского вымирания планете возникли всего лишь два основных морфологических типа: с четырьмя лапами (четвероногие) и с двумя (двуногие). С течением времени (триас длился около 50 млн лет), и уже в юрском периоде (также длился 50 млн лет) эволюция ящерообразных породила гораздо большее разнообразие видов и структурных типов (в том числе в размерах), чем у звероподобных рептилий. Пока другие палеонтологи тратили время, осматривая музейные коллекции, мюнхенские коллеги получили готовые цифры, обосновавшие гипотетические сведения.

вернуться

180

S. Schoepfer et al., «Cessation of a Productive Coastal Upwelling System in the Panthalassic Ocean at the Permian-Triassic Boundary,» Palaeogeography, Palaeoclimatology, Palaeoecology 313–14 (2012): 181–88.

вернуться

181

История коралловых рифов рассматривалась нами в главе, посвященной ордовикскому периоду. По этому вопросу наш главный эксперт — Джордж Стэнли. G. D. Stanley Jr., ed., Paleobiology and Biology of Corals, Paleontological Society Papers, vol. 1 (Boulder, CO: The Paleontological Society, 1996). Также внимания заслуживает и другая его работа «Кораллы и рифы: Кризис, Коллапс и Перемены» (Corals and Reefs: Crises, Collapse and Change), которая была представлена в виде краткого курса лекций Палеонтологического общества на собрании Геологического сообщества Америки в Миннеаполисе, 8 октября 2011 г.

55
{"b":"555214","o":1}