Литмир - Электронная Библиотека
Содержание  
A
A

Мы еще многого не знаем о человеческом развитии. Существует ли вероятность того, что нас ждут сюрпризы, которые коренным образом изменят наш взгляд на него, или же основные принципы развития уже известны и будущим исследователям осталось только заполнить некоторые пробелы? Большинство ученых сходятся на том, что общие принципы уже известны – это генетический контроль, межклеточная коммуникация, миграции клеток и т. д. Однако, как показывает история науки, это еще ни о чем не говорит. В конце XIX в. физики, вооруженные законами Ньютона, законами Максвелла и законами термодинамики, были уверены, что в общем и целом знают устройство Вселенной и что осталось прояснить лишь некоторые частности. Затем были открыты теория относительности и квантовая механика, и традиционные представления полетели вверх тормашками. Природа без устали преподносит нам сюрпризы. Так в какой же области биологии развития наиболее вероятны открытия, способные потрясти ее парадигму?

Маловероятно (по крайней мере, так кажется мне), что к революционным открытиям приведут дальнейшие исследования на молекулярном уровне. Они, безусловно, оставляют простор для неожиданностей, как подтверждает недавнее открытие РНК-интерференции и микро-РНК[374],[375],[376] – совершенно нового для нас метода генетического контроля. Тем не менее это открытие не изменило основной принцип – то, что одни гены контролируют экспрессию других, – а просто показало, что иногда это происходит с помощью не белка, а РНК. Более перспективное направление развития генетики – это рассмотрение общих паттернов экспрессии генов, выявление групп генов, которые всегда действуют вместе и, возможно, работают как согласованная система («модуль») при выполнении какой-то важной функции. Соседняя область, где можно попробовать поискать откровений, – это изучение паттернов связи в коммуникационных сетях клеток. Я имею в виду не молекулярную основу сигналов, а общие закономерности их организации, так сказать, «схемы проводки». Сейчас эти сигналы, как правило, изучают по отдельности, и лишь немногие первопроходцы исследуют сигнальные сети в целом, пытаясь разглядеть общую закономерность. При изучении бактерий, например, постоянно «всплывают» такие паттерны, как «петли прямой связи» или «упреждающие петли».[377] Не исключено, что в эмбрионе конкретные паттерны сигнальных сетей всегда связаны с определенными типами событий, какими бы разными ни были их молекулярные особенности. Если это окажется так, мы поднимемся на новый уровень понимания развития, а также по-новому посмотрим на вопрос, действительно ли развитие надорганизменных образований в целом похоже на развитие самого организма. Кроме того, можно было бы попробовать сравнить сети, объединяющие клетки развивающегося организма, и сети, связывающие организмы в формирующейся экосистеме. Может оказаться, что такие подходы позволят выявить интересные общие принципы, применимые к живой природе на самых разных уровнях организации.

Даже уже имеющиеся данные по эмбриональному развитию можно использовать для разработки совершенно нового медицинского подхода. Люди с серьезными повреждениями, возникшими в результате нарушений развития, травм или инфекционных заболеваний, не всегда могут восстановить недостающую ткань. Даже если стволовые клетки в соседних неповрежденных участках ткани здоровы, они не всегда могут заселить участок, истерзанный воспалением или механическим повреждением. Уже более пятидесяти лет хирурги лечат таких пациентов путем трансплантации участков их собственной ткани (одно из первых применений этого метода – пересадка кожи при ожогах) или же тканей или органов недавно умершего или в некоторых случаях еще живого донора. Примером является трансплантация почек, сердца и легких. Применение этого метода ограничено, так как операционное вмешательство вынуждает поврежденные ткани посылать сигналы тревоги, активирующие защитные реакции и заставляющие фагоциты собирать фрагменты клеток новой ткани и демонстрировать их Т-клеткам. Если Т-клетки распознают чужеродные структуры, отсутствующие у реципиента (глава 17), они дают отпор, что приводит к отторжению органа. Людям, нуждающимся в пересадке, приходится ждать трансплантата от донора со схожим типом ткани. На практике это означает, что такие пациенты ждут по много лет, и все это время их жизнь зависит от неудобных и несовершенных аппаратов жизнеобеспечения (таких, как диализаторы). Было бы очень полезно научиться создавать новые ткани и органы вместо того, чтобы забирать их у других людей.

Представления о развитии как о линейном процессе, при котором гены работают согласно жесткому плану, не оставляют места для идеи создания тканей с нуля без участия эмбриона. Тогда единственный вариант – создать новый человеческий плод и пустить его на запчасти. Такой подход отвратителен с этической точки зрения и неприемлем в цивилизованном обществе. Однако есть и другой вариант: посмотреть, что именно делают гены и их продукты, чтобы работали механизмы коммуникации и самоорганизации молекул и клеток. Если в процессе нормального эмбрионального развития клетки могут организоваться в ткани, принимая верные решения в зависимости от окружения, то не можем ли мы убедить их делать то же самое в пробирке?

Складывается впечатление, что это возможно. Подтверждение можно найти в исследованиях развития почек, которое было описано в главе 10. С помощью пищеварительных ферментов можно деликатно разрушить развивающуюся почечную ткань так, что от нее останется облако отдельных клеток, свободно плавающих в пробирке. Если затем согнать эти клетки вместе, они будут хаотично перемещаться, отыскивая себе подобных. В течение нескольких дней они без всякой помощи экспериментаторов организуются в структуру, которая, по существу, ничем не отличается от нормально развивающейся почечной ткани.[378],[379] Один взгляд в микроскоп на то, как это происходит, красноречивее любых слов свидетельствует о врожденной способности наших клеток взаимодействовать и самоорганизовываться даже в странных и неестественных ситуациях.

От этих первых опытов с почками, легкими и другими тканями, проведенных в том числе и в моей лаборатории, далеко до создания органов, пригодных для пересадки человеку. Возможно, на это уйдут десятилетия. Тем не менее растущее понимание того, что клетки используют сигналы и обратную связь для самоорганизации в структуры эмбриона и могут при правильном культивировании делать то же самое в пробирке, открывает хорошие перспективы для дальнейших исследований. В частности, стволовые клетки способны давать начало всем специализированным клеткам ткани, и, если нам удастся создать условия для активации их механизмов самоорганизации, это может стать мощным инструментом для создания новых тканей. Использование стволовых клеток костного мозга для замены крови и иммунной системы, разрушенных терапией против лейкемии, уже стало рутинной операцией (этому в немалой мере способствует простая структура костного мозга). Стволовые клетки кожи, в норме замещающие изношенные клетки кожи и волос, успешно используются для лечения обширных ожогов, уничтоживших собственные стволовые клетки кожи пациента. Мезенхимные стволовые клетки костного мозга пациента используются для заполнения собственными клетками пациента донорской соединительной ткани, предварительно промытой от клеток донора. После такой процедуры иммунная система пациента воспринимает пересаженный участок соединительной ткани как «свой», и отторжения не происходит. Знаменитый пример одной из первых операций такого типа[380] – это воссоздание «трахеи Клаудии» (женщина потеряла трахею в результате болезни). Этот случай широко освещался в газетах.

вернуться

374

Kitler R, Buchholz F. RNA interference: gene silencing in the fast lane. Semin Cancer Biol. 2003; 13:259–65.

вернуться

375

Bosher JM, Labouesse M. RNA interference: genetic wand and genetic watchdog. Nat Cell Biol. 2000; 2:E31–6.

вернуться

376

Plasterk RH, Keting RF. The silence of the genes. Curr Opin Genet Dev 2000; 10:562–7.

вернуться

377

Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A. 2003; 100:11980–5.

вернуться

378

Unbekandt M, Davies JA. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int. 2010; 77:407–16.

вернуться

379

Ganeva V, Unbekandt M, Davies JA. An improved kidney dissociation and reaggregation culture system results in nephrons arranged organotypically around a single collecting duct system. Organogenesis. 2011; 7:83–7.

вернуться

380

Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigoto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA. Clinical transplantation of a tissue-engineered airway. Lancet. 2008; 372:2023–30.

68
{"b":"554801","o":1}