Литмир - Электронная Библиотека
Содержание  
A
A
Онтогенез. От клетки до человека - _68.png

Рис. 68. Поиск аксоном пути в сетчатке, расположенной в задней части глаза и показанной на рисунке в виде чашеобразной структуры (примерно такую форму она и имеет). Аксоны ганглиозных клеток сетчатки находят путь к точке выхода, ведущей к зрительному нерву, пользуясь сигналами молекул-аттрактантов (таких, как Sonic Hedgehog), синтезируемых в центральной части сетчатки, а также, возможно, сигнальных молекул-репеллентов, синтезируемых по краям сетчатки

Первые конусы роста, покидающие область глаза, оказываются в узком «коридоре». Его стены образованы клетками, которые синтезируют еще один тип молекул-репеллентов.[238] По этому узкому коридору конусы роста могут двигаться только в одну сторону – в направлении центральной части развивающегося мозга. Когда тысячи конусов роста выходят из развивающейся сетчатки, тянущиеся за ними аксоны образуют мощный «кабель» – зрительный нерв.

Зрительные нервы от обоих глаз сходятся в одном и том же месте центральной части мозга и сталкиваются с необходимостью выбора дальнейшего маршрута. Некоторые из них пересекут срединную линию и направятся к верхнему двухолмию на противоположной стороне мозга, а другие направятся к верхнему двухолмию на своей стороне (рис. 69). Решающая, функциональная причина такого выбора маршрута связана с тем, как мы видим. У многих животных, особенно у тех, которые должны спасаться от хищников, глаза размещены по бокам головы.

Такое расположение дает определенное преимущество, потому что картины, которые видит каждый глаз, почти не перекрываются, и животное может одновременно следить за происходящим с двух сторон. Это позволяет ему заранее обнаружить хищника и, если повезет, убежать или спрятаться. Если поля зрения не перекрываются, информацию, поступающую от двух глаз, можно обрабатывать по отдельности. У таких животных зрительные нервы просто пересекаются в центре мозга, так что нерв от левого глаза идет к структурам правой части мозга, а нерв от правого глаза – к левой. Люди же смотрят прямо вперед, что характерно для хищников или для животных, которым нужно точно оценивать расстояние, например, когда они перемещаются в древесных кронах, прыгая с ветки на ветку.

У людей больше половины поля зрения охватывается обоими глазами. Поскольку глаза расположены по обе стороны от средней линии тела на некотором расстоянии друг от друга, мозг способен воспринимать картину в трех измерениях. Чтобы проверить, как это происходит, расположите палец на расстоянии 30–60 см от лица и закройте левый глаз. Теперь переместите палец так, чтобы он совместился с каким-нибудь удаленным предметом. Не двигая палец, закройте правый глаз и откройте левый: вам покажется, что палец сдвинулся относительно этого предмета. Разница в восприятии положения объектов глазами позволяет мозгу очень точно рассчитывать расстояние, но для этого одна и та же область мозга должна получать информацию одновременно от обоих глаз. Для этого значительное число конусов роста должно не пересекать центральную линию, а возвращаться к своей стороне головного мозга, встречаясь с конусами роста от другого глаза. Достигнув средней линии, некоторые конусы роста разворачиваются обратно – опять же, под действием молекул-репеллентов, синтезированных клетками средней линии.[239] Некоторые конусы роста чувствуют эти молекулы и следуют их командам, а другие игнорируют их присутствие, потому что их мембрана содержит другие комбинации рецепторов.[240] После того как конусы роста пересекли среднюю линию или, наоборот, развернулись и остались на своей стороне, их путь к верхнему двухолмию снова определяется сигналами-репеллентами, которые не дают им «сбиться с пути». Возможно, от цели их пути также распространяются какие-то молекулы-аттрактанты;[241] во всяком случае, так обстоит дело с некоторыми другими путями миграции конусов роста в пределах мозга, например при создании пути, по которому сенсорная информация поступает в кору.

Онтогенез. От клетки до человека - _69.png

Рис. 69. Схема пути аксонов из сетчатки к верхнему двухолмию – области головного мозга, где воспроизводится видимая глазом картина. На схеме слева (вид мозга сбоку) показано расположение верхнего двухолмия. На схеме справа показано, как аксоны подходят к области перекреста и либо пересекают среднюю линию, либо остаются на той же стороне (размер нервов и верхнего двухолмия немного увеличен для наглядности)

Сигнальные молекулы, указывающие конусам роста правильный путь, – это очень интересно, но возникает вопрос: а как, собственно, сами путеводные сигналы распределяются столь сложным образом? Ответ (во всяком случае, известная нам малая часть ответа) представляет собой частный случай общего правила, характерного для эмбриона в целом. В процессе развития клеток центральной нервной системы комбинация сигналов от близлежащих тканей и белков, уже имеющихся в клетках, определяет, какие гены будут активны в клетках, а какие – нет. Некоторые из этих генов вовлечены в производство сигнальных молекул, которые в свою очередь выступают в качестве сигналов для соседних клеток и могут повлиять на активацию их генов. За счет работы подобных механизмов простая и однородная система может превратиться в невероятно сложную и неоднородную. При развитии нервной системы в действие вступает дополнительный усложняющий аспект: когда нейроны выпускают конусы роста, а те, используя сигналы окружающих клеток для поиска пути, начинают прокладывать путь, оставляя за собой аксоны, эти аксоны сами начинают выступать в качестве сигналов. Они могут менять экспрессию генов в прилегающих клетках или направлять миграцию других конусов роста. Можно сказать, что география нервной системы напрямую зависит от ее истории; как в случае эмбриона в целом, одно усложнение порождает другое.

Этот принцип организации развития, при котором реакция на одно изменение становится триггером следующего изменения, является мощным средством повышения сложности, но при этом он чреват серьезными опасностями. Когда небольшие различия, порожденные одним из процессов развития, многократно усиливаются за счет того, что последующие процессы опираются на эти различия, не остается места для ошибок, и сбой одной системы на ранней стадии может повлечь за собой непропорционально тяжелые последствия. Возможно, именно поэтому очень многие генетические заболевания приводят к серьезным нарушениям работы мозга.

Примером аномалии головного мозга, связанной с проблемой в начале развития нервной системы, является лиссэнцефалия. Существует множество мутаций, препятствующих нормальному перемещению тел нейронов в процессе утолщения нервной трубки. Это приводит к неправильному формированию слоев. В результате нейроны образуют трубку, площадь поверхности которой слишком мала для образования мозговых извилин («лиссэнцефалия» означает «гладкий мозг»).[242] Если слои сформировались неправильно, работа мозга нарушена. Дети с тяжелыми формами этого заболевания отличаются крайне низким уровнем интеллектуального развития – как правило, оно остается на уровне ребенка нескольких месяцев от роду. Такие дети страдают от сильных мышечных спазмов и судорог и часто умирают очень рано из-за неспособности контролировать дыхание.

На более поздних этапах развития различные мутации могут вызвать специфические сбои поиска правильного пути конусами роста. В результате не образуются нужные связи или, наоборот, возникают ненужные. Некоторые клетки мозга синтезируют особую молекулу клеточной адгезии – L1CAM. Конусы роста с рецепторами, распознающими эту молекулу, будут двигаться по маршруту, размеченному секретирующими ее клетками. Мутации, влияющие на функции молекулы L1CAM, лишают конусы роста этого важного сигнала.[243],[244] У людей с такими мутациями не хватает связей между левым и правым полушарием мозга, а также между головным и спинным мозгом. Это приводит к нарушению двигательной функции и ряду других проблем. Встречаются также мутации в генах, кодирующих белки системы ROBO/SLIT (напомню, что она контролирует пересечение аксонами срединной линии). В этом случае конусы роста, которые должны пересечь среднюю линию, не могут этого сделать из-за повышенной чувствительности к ROBO. Носители этих мутаций страдают от зрительных расстройств и нарушений координации движения.[245]

вернуться

238

Oster SF, Bodeker MO, He F, Sretavan DW. Invariant Sema5A inhibition serves an ensheathing function during optic nerve development. Development 2003; 130:775–84.

вернуться

239

Wang J, Chan CK, Taylor JS, Chan SO. The growth-inhibitory protein Nogo is involved in midline routing of axons in the mouse optic chiasm. J Neurosci Res. 2008; 86:2581–90.

вернуться

240

Kuwajima T, Yoshida Y, Takegahara N, Petros TJ, Kumanogoh A, Jessell TM, Sakurai T, Mason C. Optic chiasm presentation of Semaphorin6D in the context of Plexin-A1 and Nr-CAM promotes retinal axon midline crossing. Neuron. 2012; 74:676–90.

вернуться

241

Erskine L, Reijntjes S, Prat T, Denti L, Schwarz Q, Vieira JM, Alakakone B, Shewan D, Ruhrberg C. VEGF signaling through neuropilin 1 guides commissural axon crossing at the optic chiasm Neuron. 2011; 70:951–65.

вернуться

242

Wynshaw-Boris A, Pramparo T, Youn YH, Hirotsune S. Lissencephaly: mechanistic insights from animal models and potential therapeutic strategies. Semin Cell Dev Biol. 2010; 21:823–30.

вернуться

243

Schäfer MK, Altevogt P. L1CAM malfunction in the nervous system and human carcinomas. Cell Mol Life Sci. 2010; 67:2425–37.

вернуться

244

Fransen E, Van Camp G, Vits L, Willems PJ. L1-associated diseases: clinical geneticists divide, molecular geneticists unite. Hum Mol Genet. 1997; 6:1625–32.

вернуться

245

Jen JC, Chan WM, Bosley TM, Wan J, Carr JR, Rüb U, Shatuck D, Salamon G, Kudo LC, Ou J, Lin DD, Salih MA, Kansu T, Al Dhalaan H, Al Zayed Z, MacDonald DB, Stigsby B, Plaitakis A, Dretakis EK, Gotlob I, Pieh C, Traboulsi EI, Wang Q, Wang L, Andrews C, Yamada K, Demer JL, Karim S, Alger JR, Geschwind DH, Deller T, Sicote NL, Nelson SF, Baloh RW, Engle EC. Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science. 2004; 304:1509–13.

45
{"b":"554801","o":1}