Литмир - Электронная Библиотека
Содержание  
A
A

М. Б. Эволюция многоклеточных привела к созданию организмов, устроенных по принципу конфедерации клеток. Функцию многих организмов можно объяснить как сумму функций специализированных клеток. По этому принципу мы можем понять работу сердца, мышц, печени, кишечника. Но такой подход не годится, когда мы обращаемся к рассмотрению человеческого мозга. Здесь происходит метаморфоза устройства и программы клеток в новое качество, которое уже не получишь просто путем суммирования. Широко распространено мнение, что никакой сущностной связи между физиологией мозга и феноменом сознания наукой пока не найдено — разве что на самом общем уровне, вроде того, что левое полушарие отвечает за словесно-аналитическое, а правое — за образное мышление. Как вообще можно подступиться к этой проблеме, которую многие считают одной из главных для науки XXI века?

В. Р. Историко-эволюционный подход — это одна из возможностей человека «поднять самого себя за волосы» — то есть с помощью средств, ресурсов и возможностей науки, истории, культуры и компьютерной обработки материалов раскопок оценить истоки и пути развития всех специализированных машин мозга — в обход всякой мифологии и догм. Тут необходимо помнить, что эволюция мозга не оставляет «костей» и прямых улик. За короткий исторический период мозг прямоходящих обезьян подвергся кардинальной реконструкции, о чем приходится судить не по «черепкам» новых способностей, зародышу «личности», а лишь по динамике внутреннего переустройства костей черепа. Развитие мозга связано в первую очередь с органами чувств и необходимостью адекватно и полно манипулировать с зрительной, слуховой информацией. С этой информацией мозг обращается частично произвольно, частично — в автоматическом режиме. Если освободившиеся руки человека потребовали орудий труда и орудий защиты, то главным орудием мозга стало знание, экспертиза, опыт, которые по крупицам приобретались в ходе многочисленных проб и ошибок. Подобно драге золотоискателя, мозг просеивает горы информации, чтобы заполучить крупицы знаний. Вся информация от органов чувств поступает в нейронные сети мозга на универсальном языке электрических разрядов в пределах тысячных долей секунды. Быстродействие электрических каналов связи вполне достаточно для передачи в мозг любой важной информации. Электрические коды линейно упорядочивают потоки информации от разных органов чувств, интегрируют разнородную информацию образами (враг, жертва, пища, чужак и т. п.). Этот вид линейного кодирования требует много ячеек памяти для улавливания новизны на фоне уже известного. Каждый нейрон нашего мозга имеет множество отростков, каждый отросток контактирует с другим отростком соседнего нейрона. Получается ультраплотная сеть нейронов, позволяющая создавать бесконечные комбинации работающих «ансамблей» нейронов. Вторая особенность нейронов — в их отростках локализованы молекулярные машины памяти, которые перекодируют электрические сигналы в линейные параллельные ряды белковых молекул (файлы молекулярной долгосрочной памяти). Молекулы памяти не синтезируются, а просто переупаковываются по мембране без затраты энергии. Поэтому энергетические расходы мозга сопоставимы с лампочкой на 25–30 вт. Последовательность электрических импульсов перекодируется в нанотексты линейных рядов молекул с плотностью расположения соседних молекул в миллиардную долю метра. «Электронноионный» компьютер состыкован с «молекулярным», который «электрические тексты» переписывает на «жесткий диск» параллельными рядами молекул. Оба компьютера работают в интерактивном режиме, то есть любая информация существует либо в реальном времени (оперативной памяти), либо хранится в долгосрочной памяти в отростках нейронов (синапсах). Огромные массивы негенетической внешней информации упакованы серийными рядами молекул белков. Мозг, усваивая новизну, расширяет объем памяти (экспертизу). Устройство мышц руки выдающегося скрипача или теннисиста мало отличается от мышц руки обычного человека. Однако в головном мозге музыканта или спортсмена работает уникальная программа из многих тысяч нейронов, синхронно и тонко управляющая работой двадцати мышц-сгибателей и такого же количества мышц-разгибателей руки. Подчиняясь таким программам, многие соматические клетки могут достигать в работе удивительного совершенства. Например, мускулатура нашего выдающегося штангиста Юрия Власова была натренирована синхронно сокращаться в режиме тысячных долей секунд. В результате высочайшей производительности мышц ему удавалось поднимать вес, который намного превышал вес его собственного тела. Пример Власова и других выдающихся спортсменов показывает, что возможности человеческих мышц реализованы всего на 10–15 процентов. Новые рекорды и прорывы будут осуществлены новыми программами управления, созданными нервной системой в слепом эволюционном поиске. Спорт остается механизмом эволюции, механизмом отбора наилучших решений, которые интересны всему обществу. Специальные программы мозга позволяют человеку преодолевать боль, не отвечать ожоговой реакцией кожи на высокую температуру, эффективно противостоять холоду или невесомости.

Следует помнить, что разница в геноме между homo sapiens и обезьяной составляет всего 3 процента (кстати, еще Ницше писал: «Я ничему не удивляюсь в человеке после того, как узнал, что половина его генов происходит из червя»; а последние данные показывают, что эта гомология генов между исследованным видом червей и homo sapiens еще выше — почти 75 процентов). Только новое устройство мозга дает нашему виду билет в другие реальности. И мышцы, и органы чувств у обезьяны развиты лучше, чем у человека. Однако обезьяна значительно хуже умеет пользоваться своими органами, поскольку хуже извлекает суть и плохо обучается.

Известно, что мозг человека на 80 процентов загружен зрительной информацией. Взаимодействие квантов света с фоторецепторами (палочками и колбочками) сетчатки по принципу фотоэлемента дает на выходе электрические сигналы, частотой и амплитудой которых закодировано изображение. Распознавание «старых» и «новых» образов, разумеется, не происходит автоматически на сетчатке, и клетки самого глаза его не обеспечивают — они для этого слишком примитивно устроены. Поэтому глаз работает как современный электронный фотоаппарат или телекамера, передавая информацию «по кабелю» в первую «студию» — таламус (зрительный центр).

В начале 70-х годов XX века многим молекулярным биологам казалось, что расшифровка ДНК и законов генетического кода дает ключи к раскрытию алгоритма мозга как компьютера. Важно было грамотно сформулировать задачу и выбрать только одну машину мозга, чтобы расшифровать устройство и программу. В 1972 году две главных знаменитости в молекулярной биологии, Фрэнсис Крик и Сидней Бреннер, пригласили работать в Кембридж «молодого гения» — Дэвида Марра. Этот молодой ученый сумел убедить лучших молекулярных генетиков, эмбриологов, физиологов и эволюционистов, что первым шагом на пути к тайнам мозга должны стать исследования, проясняющие механизмы зрения. Под влиянием Марра была создана первая международная программа, в которой было задействовано десять нобелевских лауреатов. К сожалению, это замечательное начинание через несколько лет осталось без лидера: Марр погиб в расцвете лет в 1980 году. Однако симпозиумы, посвященные его памяти, продолжаются и ныне. Марр, позднее Фрэнсис Крик предположили, что изображение с сетчатки глаза снимается и передается в таламус не как целая картинка, а как мозаика «пикселей» (минифрагментов) изображения. Молекулярные биологи ухватились за эту идею, потому что «пиксель» сетчатки выглядел похожим на один «ген» зрения. Комбинацией «пикселей» можно было бы объяснить передачу любого изображения от сетчатки в мозг. Крик пытался выяснить материальную подоплеку одного такого зрительного «пикселя» на «экране» таламуса и коры. Однако уровень его методики оказался недостаточным, чтобы получить однозначный ответ на этот вопрос. Через два года после Крика эта задача была блестяще решена Гарритом Стенли и его коллегами в Калифорнийском университете (Беркли, США). Ответ оказался неожиданным. Ученые пометили 177 нейронов таламуса бодрствующей кошки микроэлектродами для записи электрических импульсов на таламусе при передаче изображения от сетчатки и при закрытых глазах животного. Профиль электрической активности каждого из 177 нейронов таламуса естественным образом менялся в зависимости от картинки на сетчатке, то есть от того, что в данный момент видела кошка. Декодировка электрических сигналов проводилась компьютером по ранее составленной программе (одни сигналы кодируют контурную линию предмета, другие — цвет, третьи — глубину и текстуру изображения). Когда перекодированную информацию от всех нейронов суммировали и вывели на монитор, экспериментаторы увидели немного размытое изображение предметов на сетчатке глаза кошки! Этот эксперимент прямо подтвердил линейный перенос зрительной информации от клеток сетчатки к клеткам таламуса как бы с помощью многожильного кабеля, который содержит около 150 000 нейронов на 1 квадратный мм. Новорожденный ребенок имеет сформированную нервную сеть клеток в таламусе и после рождения немедленно учится ею пользоваться. У хорьков короткий внутриутробный период развития оставляет новорожденных с недоразвитой нервной сетью таламуса, зрительной и слуховой коры. Таламус является главным диспетчером, куда первично приходит и где интегрируется зрительная и слуховая информация. Если у новорожденных хорьков перерезать нервы, соединяющие таламус со слуховой корой, возникают удивительные метаморфозы. Зрительные нервы от таламуса первыми проникают в слуховую кору и реорганизуют устройство нервной сети под прием зрительной информации. Такие животные с перестроенным мозгом воспринимают зрительную информацию одновременно зрительной и слуховой корой больших полушарий. Эти замечательные опыты показали, что гены внутриутробного развития намечают лишь общие контуры устройства мозга, число клеток в разных отделах мозга. Однако главные «дирижеры» сборки разных функциональных сетей для зрения, слуха, обоняния — сигналы от органов чувств, то есть из внешнего мира. Огромная пластичность устройства мозга новорожденных детей позволяет маневрировать проектом окончательного устройства мозга в разных внешних условиях (иметь много разных машин для разнообразных функций или меньше машин, но с мощной программой).

73
{"b":"284151","o":1}