Следующий этап был связан с разработкой в 1947 г. Р. Бозортом (США) [10.28] новой технологии термообработки пермаллоев, а именно: были введены отжиг при температуре 1200–1300 °С в среде чистого водорода и длительный отпуск при температуре 400–550 °С. После подобной обработки одной из промышленных марок пермаллоя — так называемого супермаллоя (79% никеля, 16% железа, 5% молибдена) удается получить начальную проницаемость более 100 тыс. В 1958 г. Ф. Ассмус (Германия) доказал, что эффект удаления примесей в процессе высокотемпературного отжига и последующего отпуска имеет место не только в супермаллое и что таким способом достигается очень высокая магнитная проницаемость в целой группе тройных сплавов, например в мюметалле и сплаве 1040.
Дальнейшие исследования привели к получению двойных сплавов алюминий-железо, к которым относятся, например, альфенол (16% алюминия) и терменол (16% алюминия, 3% молибдена), которые по магнитным свойствам не уступают низконикелевым пермаллоям. Альфенол удается изготавливать в виде лент толщиной до 0,1 мм, что позволяет использовать его в головках для звукозаписи. Отечественный альфенол марок 12Ю с магнитной проницаемостью μr = 1000 и 12ВИ с μr = 10 000 характеризуется высокой прочностью, износоустойчивостью и стойкостью к коррозии, что позволяет изготовлять изделия с высокой чистотой обработки поверхности.
10.4.2. АМОРФНЫЕ МАГНИТОМЯГКИЕ МАТЕРИАЛЫ (АММ)
Это новая группа магнитомягких материалов с перспективным сочетанием высоких магнитных, электрических и механических свойств. Упорядоченное расположение атомов в этих материалах существует только в ближнем порядке. Такое аморфное состояние формируется при высокой скорости охлаждения жидкого расплава металла или сплава, частицы при этом не успевают образовать кристаллическую решетку. На практике наиболее широко применяют метод быстрой закалки. Процесс производства АММ дешевле, чем традиционных листовых магнитомягких металлов (МММ).
Металлические АММ содержат 75–85% переходных металлов (железо, кобальт, никель), сплавленных с 15–25% металлоида — бора, углерода, кремния, фосфора, использующихся в качестве стеклообразующих. Дополнительно АММ легируются хромом, танталом, ванадием, марганцем и др. По магнитным свойствам АММ не уступают электротехническим сталям и пермаллоям. Удельное электрическое сопротивление АММ 1,25–1,8 мкОм∙м. Магнитные потери в АММ для переменных полей высоких частот (до 100 кГц) ниже, чем потери в электротехнических сталях. Основным разработчиком АММ в России являлся ЦНИИчермет. В настоящее время в России налажено производство АММ различных марок.
10.4.3. ФЕРРИМАГНИТНЫЕ МАТЕРИАЛЫ
В настоящее время большое внимание уделяется ферритам. Ферриты ведут свое происхождение от магнетита — естественного постоянного магнита, известного на протяжении всей истории человечества. Природный минерал — феррит железа, или магнетит Fe3O4, был давно известен как один из магнитных материалов. Учитывая низкую удельную электрическую проводимость магнетита (100 Ом∙см). С. Гильберт (Германия) уже в 1909 г. предложил использовать его в высокочастотных магнитных цепях. Однако из-за плохих магнитных свойств, и прежде всего из-за низкой магнитной проницаемости, ферриты железа не нашли практического применения; к тому же сама техника высоких частот делала в те годы первые шаги. Лишь после интенсивных исследований, начатых в Голландии в 1933 г., удалось существенно улучшить характеристики ферритов и организовать их широкое внедрение в технику.
В 1936 г. научные исследования в этом направлении начала лаборатория фирмы «Филипс». К концу второй мировой войны благодаря фундаментальным исследованиям Я. Сноека в Голландии был разработан ряд синтетических магнитомягких ферритов с начальной магнитной проницаемостью 103 [10.27].
В СССР пионерами разработки ферритов являлись коллективы ученых, возглавляемые ГА. Смоленским, Н.Н. Шольц, К.А. Пискаревым, С.В. Вонсовским, К.М. Поливановым, С.А. Медведевым, К.П. Беловым, Е.И. Кондорским, РВ. Телесниным, Я.С. Шуром, Т.М. Перекалиной, И.И. Ямзиным, Л.И. Рабкиным, А.И. Образцовым и многими другими [10.30, 10.31,10.33].
Для получения высокой магнитной проницаемости ферритов, относящихся к группе поликристаллических материалов с кубической гранецентрированной решеткой, необходимо стремиться к уменьшению внутриструктурных напряжений и кристаллической анизотропии. Другими словами, магнитострикция и константа кристаллографической анизотропии должны быть близкими к нулевому значению. Исследованиями было установлено, что если образовать твердый кристаллический раствор оксида железа Fe2O3 с немагнитной присадкой, то точку Кюри можно сместить в область, близкую к комнатным температурам, и таким образом резко повысить магнитную проницаемость в рабочем диапазоне температур. В качестве немагнитного компонента наиболее пригодным оказался оксид цинка, так как феррит цинка кристаллизуется не в обращенной магнитной форме, а в форме нормальной немагнитной шпинели. В последующие годы была разработана большая группа магнито-мягких ферритов для различных диапазонов частот путем присадки цинка и никеля или цинка и марганца. По сравнению с никель-цинковыми марганец-цинковые ферриты обладают более высокой магнитной проницаемостью и намагниченностью насыщения. Наряду с этим тангенс угла диэлектрических потерь возрастает быстрее у марганец-цинковых ферритов начиная с частоты около 1 МГц; причина этого явления — смещение в сторону более низких частот гиромагнитной граничной частоты, увеличение размеров зерен структуры и уменьшение удельного электрического сопротивления материала. Поэтому в катушках высокой добротности марганец-цинковые ферриты применяют только для работы на частоте до 2 МГц, а для работы на частотах до 300 МГц сердечники изготовляют из никель-цинковых ферритов, имеющих также кубическую поликристаллическую структуру, но более низкую магнитную проницаемость.
Редкоземельные ферриты со структурой граната заняли в технике столь же важное место, как и ферриты со структурой шпинели. Формула гранатов может быть записана следующим образом: Me3Fe5O12, где Me обозначает ион редкоземельного металла. Изучение редкоземельных гранатов было затруднено тем, что их структуру относили к типу искаженного перовскита. В 50-х годах X. Форестье и Г. Гийо-Гийен (Франция) изготовили несколько соединений класса Fe2O3Me2O3, где Me обозначает лантан, празеодим, неодим, самарий, эрбий, иттрий, гадолиний, тулий, диспрозий и иттербий. Они обнаружили, что намагниченность насыщения этих соединений несколько ниже, чем намагниченность насыщения никелевого феррита, и что существует две температуры Кюри — выше 400 °С и около 300 °С, в которых намагниченность принимает нулевое значение. Одна из этих «точек Кюри» представляет собой температуру компенсации, характерную для некоторых ферримагнитных гранатов. Г. Гийо считал, что этот материал обладает кубической структурой типа перовскита, и установил соответствие между температурами Кюри и диаметрами металлических ионов. В 1954 г. Р. Потенэ и X. Форестье (Франция) опубликовали дополнительные данные о температурных зависимостях намагниченности для ферритов гадолиния, диспрозия и эрбия. Е.Ф. Берто и Д. Форра (Франция) в 1956 г. рассмотрели подробнее систему Fe2O3Me2O3 и предположили наличие новой структуры для этого класса материалов. Эта структура состоит из кубических элементарных ячеек, содержащих восемь формульных единиц 5Ре2О33Ме2О3.
Эта структура оказалась изоморфной с классическим природным гранатом Ca3Fe2Si3O12. Л. Неель, Ф. Берто, Д. Форра и Р. Потенэ (Франция) назвали эту новую группу ферримагнитных материалов редкоземельными гранатами.