В ЛЭТИ были развиты оригинальные идеи управления сложными взаимосвязанными электромеханическими объектами.
Большое внимание уделялось проблемам электромагнитной совместимости электропроводов с питающей сетью (ГПИ «Тяжпромэлектропроект»), в чем отражалось расширяющееся применение электропроводов с тиристорными преобразователями и современными средствами управления.
6.6.10. МИКРОПРОЦЕССОРЫ В ЭЛЕКТРОПРИВОДЕ
Создание в США на границе 60–70-х годов четырехразрядного однокристалльного микропроцессора INTEL 4004 и программируемого логического контроллера (ПЛК) PDP 14 ознаменовало новую эру в сфере управления электропривода. Уже в 70-е годы в мировой практике эти технические средства начали интенсивно вытеснять использовавшиеся ранее контактные и бесконтактные реле; к 80-м годам схему управления на восьми и более реле стало экономически целесообразно заменять ПЛК.
В сравнении с устройствами монтажной логики ПЛК обладает высокой гибкостью при отладке, он не зависит от объекта управления, снижает расходы на разработку, программирование, тестирование и запуск изделия, очень компактен, имеет высокую надежность, упрощает обслуживание системы привода. ПЛК может выполнять вычисления, обеспечивать регулирование, принятие решений, наблюдение за отработкой алгоритма управления.
В сравнении с мини-компьютером ПЛК существенно проще, он ориентирован на непосредственное общение с объектом управления. На рис. 6.51 показаны зоны рентабельного использования различных технических средств управления.
Рис. 6.50. Система подчиненного регулирования координат электропривода
Рис. 6.51. Области рентабельного использования различных технических средств управления
По мере развития микропроцессорных средств управления и ПЛК изменялась информационная часть электропривода: резко, почти скачкообразно, наращивались функциональные возможности в управлении координатами, во взаимодействии нескольких систем между собой и с внешней средой, в детальной диагностике состояния и защите всех элементов привода от любых нежелательных воздействий.
6.6.11. СОВРЕМЕННЫЙ ЭЛЕКТРОПРИВОД
Концептуальные изменения в развитие электропривода внесла новая элементная база силового канала — полностью управляемые ключи, появившиеся на рынке в последние. 6–7 лет, и средства управления ими. Фирмы «Тошиба», «Сименс» и др. выпустили силовые транзисторы IGBT на токи до 600 А, напряжение до 1200 В с частотами 30 кГц и выше. Эти приборы, объединенные в модули с встроенными быстрыми обратными диодами и управляемые указанными выше современными средствами, послужили основой для построения преобразователей частоты со структурой неуправляемый выпрямитель — LC-фильтр — автономный инвертор с широтно-импульсной модуляцией (ШИМ) (рис. 6.52), ставших основным техническим решением в регулируемом электроприводе переменного тока мощностью до 600 кВт. Преобразователи более мощных приводов строятся на полностью управляемых тиристорах GTO; в бытовых и других электроприводах низкого напряжения используются приборы MOSFET.
По прогнозам до 2002 г. европейский рынок регулируемых электроприводов на 68% будет состоять из приводов переменного тока, на 15 — из приводов постоянного тока, на 10 — из гидропроводов и на 7% — из механических приводов.
Рис. 6.52. Система преобразователь частоты ПЧ — асинхронный двигатель АД
Нетрадиционные электромеханические устройства (линейные, поворотные, планарные многокоординатные двигатели и т.п.) в сочетании с развитыми микропроцессорными средствами управления образуют электромеханические структуры, интегрированные в технологическое оборудование и создающие принципиально новый тип технологической среды.
Интенсивно осваиваются новые виды регулируемого электропривода — вентильно-индукторный, с другими нетрадиционными электрическими машинами. В микроприводе миниатюрных роботов применяются тонкопленочные диэлектрические двигатели.
В последние годы в мире отчетливо сформировалось и интенсивно реализуется тенденция перехода от нерегулируемого электропривода к регулируемому в массовых применениях: насосы, вентиляторы, конвейеры и т.п., благодаря чему резко повышается технологический уровень оборудования, экономятся значительные энергетические ресурсы.
Электропривод сформировался сегодня как система, осуществляющая управляемое электромеханическое преобразование энергии и состоящая в общем случае из электрического (ЭП), электромеханического (ЭМП) и механического (МП) преобразователей, образующих силовой канал, измерительных преобразователей (ИП), преобразующих информацию, и управляющих устройств, входящих в информационный канал (рис. 6.53).
Рис. 6.53. Структура современного электропривода
Электропривод обеспечивает механической энергией подавляющее большинство агрегатов, связанных с движением во всех сферах человеческой деятельности, и может в силу этого рассматриваться как главный поставщик механической энергии, полученной из электрической в результате электромеханического преобразования. Будучи управляемой системой, электропривод взаимодействует через информационный канал с системами управления более высокого уровня и служит для них силовым интерфейсом с технологическими процессами.
Практически все процессы в современной технологии, связанные с механической энергией и движением, осуществляются электроприводом. Исключения составляют лишь автономные транспортные средства (автомобили, самолеты, некоторые виды подвижного состава и судов), использующие неэлектрические двигатели и не имеющие электрических передач.
Столь широкое, практически повсеместное, распространение электропривода обусловлено особенностями электрической энергии — возможностью экономично передавать ее на любые расстояния, постоянной готовностью к использованию, легкостью превращения в другие виды энергии.
В приборных системах сегодня используются электроприводы мощностью в единицы микроватт, мощность электропривода компрессора на перекачивающей газ станции — десятки мегаватт, т.е. диапазон мощности современных электроприводов превышает 10. Такой же порядок имеет диапазон частот вращения: в установках для выращивания кристаллов полупроводников вал двигателя должен делать один оборот за несколько часов при жестких требованиях к равномерности движения, тогда как частота вращения шлифовального круга может достигать 150 000 об/мин.
Но особенно широк диапазон применений современного электропривода — от искусственного сердца до шагающего экскаватора, от вентилятора или насоса до антенны радиотелескопа, от стиральной машины до гибкой производственной системы. Именно эта особенность — теснейшее взаимодействие с обслуживаемой технологической сферой — оказывала и оказывает на электропривод мощное стимулирующее влияние, определяет его развитие и совершенствование.
СПИСОК ЛИТЕРАТУРЫ
6.1. Blondel A. Complements a la theorie des alternaters a deux reactions // Rev. gen. dec, 1922. T. 12. P. 203,235.
6.2. Blondel A. Application de la methode de deux rections а l'etude des phenomenes oscillatories des alternateurs couples // Rev. gen. elec 1923. T. 13. P. 235, 275, 331, 387, 515.
6.3. Fortescue C. L. Method of Symmetrical Coordinates Applied to the Solution of Polyphase Networks // Trans. AIEE. 1918. Vol. 37. Pt. II. P. 1027–1140.
6.4. Вагнер К.Ф., Эванс Р.Д. Метод симметричных составляющих. Л — М.: ОНТИ, 1936.
6.5. Ku Y. H. Transient analysis of а. с. machinery // Trans. AIEE. 1929. Vol. 48. P. 707.