Литмир - Электронная Библиотека
Содержание  
A
A

Химическими методами вода, как известно, может быть разложена на два газа — водород и кислород. Очевидно, что и мельчайшая частица воды — молекула также может быть разложена на водород и кислород. Наименьшие частицы водорода и кислорода, образующие молекулу воды, называются атомами, от греческого слова «атомос», что значит «неделимый». Атомы — частицы еще более мелкие, чем молекулы. Например, размеры атомов водорода таковы, что на отрезке линейки длиной в 1 см их укладывается 100 миллионов. До XX в. это название совпадало с основным представлением об атоме как наименьшей и действительно неделимой и неизменяемой частице. Исследованиями было установлено наличие в природе 92 различных видов атомов (элементов), из сочетания которых и состоят все вещества Вселенной.

К концу XIX в. в науке стали накапливаться факты, свидетельствовавшие об ошибочности представлений о неделимости и неизменности атомов. Мысль о том, что атомы делимы, что они состоят из более простых частиц, была впервые высказана независимо друг от друга русскими учеными Н. Н. Бекетовым и А. М. Бутлеровым. Так, например, в работе «Основные понятия химии», вышедшей вторым изданием в 1902 г., А. М. Бутлеров писал, что атомы «…не неделимы по своей природе, а неделимы только доступными нам ныне средствами и сохраняются лишь в тех химических процессах, которые известны теперь, но могут быть разделены в новых процессах, которые будут открыты впоследствии…».

Историческое развитие химии полностью подтвердило предвидение великих русских ученых. И первой частицей, обнаруженной в составе атомов, был электрон, несущий отрицательный электрический заряд и имеющий ничтожно малую массу, равную 0,000 000 000 000 000 000 000 000 000 910 г.

Нарушение старых представлений о неделимости и неизменности атомов было воспринято буржуазными учеными как научное доказательство «несостоятельности» материализма, как доказательство «исчезновения» материи и торжества идеалистических представлений.

Огромную роль в деле разоблачения идеалистов, стремившихся использовать новейшие достижения науки для борьбы с материализмом и укрепления позиций идеализма, сыграл В. И. Ленин. В своей книге «Материализм и эмпириокритицизм», написанной в 1908 г. и вышедшей в свет в 1909 г., В. И. Ленин показал, что открытие радиоактивности, превращение одних атомов в другие, существование электронов и другие открытия только углубляют представления о веществе, не только не опровергают материализм, а, наоборот, укрепляют его позиции, который всегда признавал, признает и будет признавать сложность любой, самой малой частицы (будет ли это атом, электрон и т. п.) и неисчерпаемость свойств материи.

Передовым ученым труды В. И. Ленина помогли разорвать идеалистические сети, расставленные на путях к познанию закономерностей природы, и проникнуть в глубь атома.

В начале XX в. ученым удалось установить основные черты строения атомов. В центре атома находится крохотное, в несколько тысяч раз меньше размера атома ядро, в котором почти полностью (99,9 %) сосредоточена масса атома. Вокруг ядра, как планеты вокруг Солнца, вращаются электроны. Число электронов в атоме каждого элемента можно определить по таблице Д. И. Менделеева: оно равно порядковому номеру элемента в таблице. Электроны размещаются на разных расстояниях от ядра, и те из них, которые расположены в наружном слое, т. е. наиболее удалены от ядра, называются «внешними», или валентными, электронами. «Внешние» электроны играют главную роль в химических превращениях. Переходя в процессе химических реакций от атома к атому, они обусловливают химическое поведение атома и определяют его валентность. Число валентных электронов в атоме можно также определить по таблице Д. И. Менделеева. Как правило, оно равно номеру группы, в которой находится соответствующий элемент в периодической системе.

Атомное ядро, имея весьма малый объем, содержит вещество в весьма уплотненном состоянии. О плотности ядерного вещества можно судить по следующим данным. Если бы один кубический сантиметр наполнить только атомными ядрами, то масса этого кубика составила бы 100 млн. т. «Кубик» в один кубический миллиметр (приблизительно объем двух булавочных головок), наполненный ядерным веществом, имел бы массу двух линейных кораблей по 50 тыс. т каждый. Дальнейшее изучение структуры ядра, проведенное советским ученым Д. Д. Иваненко, вновь подтвердило основное положение диалектического материализма о сложности строения атомных частиц. Оказалось, что атомное ядро является сложным образованием и в своем составе содержит протоны и нейтроны, которые, вместе взятые, называются нуклонами.

Протон представляет собой частицу, несущую положительный электрический заряд. Этот заряд равен по величине заряду электрона. Протон обладает ничтожно малой массой, равной 0,000 000 000 000 000 000 000 001 672 г.

Так как в обычных условиях атомы электронейтральны, то это значит, что число протонов в ядре равно числу электронов, т. е. равно порядковому номеру элемента в периодической системе Д. И. Менделеева.

Нейтрон — частица нейтральная, т. е. не имеющая электрического заряда. Масса нейтрона ничтожна, практически равна массе протона и составляет 0,000 000 000 000 000 000 000 001 674 г. Таким образом, присутствие нейтронов в ядре, не сказываясь на его заряде, влияет на массу. Следовательно, масса ядра определяется суммой масс протонов и нейтронов и выражается в целых числах. Эта сумма называется массовым числом. Вычитая из этой величины число протонов (порядковый номер), легко определить и число нейтронов для любого элемента.

Условились ядра элементов обозначать теми же символами, что и соответствующие им атомы элементов, указывая цифрой слева внизу от символа число протонов, а справа вверху от символа — массовое число. Ядро атома гелия в такой записи будет изображаться: 2He4.

Сложностью строения ядра объясняется наличие у одного и того же химического элемента разного вида атомов, отличающихся массовым числом. Такие разновидности атомов одного и того же химического элемента называются изотопами — равноместными (от греческих слов «изо» — равный и «топос» — место). Название объясняется тем, что изотопы определенного элемента, отличаясь по массовому числу, имеют одинаковый заряд ядра и, следовательно, одинаковые химические свойства. Поэтому они занимают в периодической системе элементов одно и то же место. Каждый химический элемент представляет собой смесь нескольких изотопов. Число изотопов у различных химических элементов не одинаково. Так, например, олово имеет 10 изотопов, платина — 6, уран — 3 и т. д. Изотопы делятся на устойчивые, нерадиоактивные изотопы, и неустойчивые, или радиоактивные. Количество устойчивых изотопов достигает 250, количество радиоактивных изотопов приближается к тысяче.

Радиоактивностью называется явление самопроизвольного испускания атомами некоторых веществ невидимых, но сравнительно легко обнаруживаемых лучей. От латинского слова «радиус», что значит луч, такие вещества стали называть радиоактивными, «лучедействующими». Радиоактивные лучи обладают совершенно необычными, многообразными свойствами. Воздух, пронизываемый радиоактивными лучами, становится электропроводным. Радиоактивные лучи вызывают почернение светочувствительных материалов (фотопленки, пластинки, бумаги); проникают через толщу непрозрачных тел, изменяют цвет окрашенных веществ и окрашивают бесцветное стекло в различные цвета; вызывают свечение тел; разлагают воду на составляющие ее элементы; производят сильное биологическое действие: убивают микроорганизмы, разрушают ткани животных и в зависимости от дозы активизируют или угнетают жизненные процессы.

Изучение радиоактивности показало, что известные науке обычные воздействия: нагревание, охлаждение, давление, действие активных химических веществ — не изменяют силы радиации. Зная, что химические свойства атомов связаны с их внешними электронами, оставалось допустить, что радиоактивность — явление, связанное с глубинными частями атомов; что это не обычный химический, а глубокий — ядерный процесс. А так как радиоактивные излучения сопровождаются внезапным выделением энергии, то это свидетельствовало также и о том, что в атомных ядрах скрыты огромные запасы внутриатомной, или ядерной, энергии.

5
{"b":"260980","o":1}