Литмир - Электронная Библиотека
Содержание  
A
A

На долю бериллия приходится 0,001 % (столько же, сколько и на цинк) от общего количества атомов земной коры. Поэтому бериллий можно считать достаточно распространенным элементом природы.

В чистом виде бериллий представляет собой легкий (пл. 1,82), твердый (легко режет стекло), стойкий к коррозии, серо-стального цвета металл. Подробное исследование соединений бериллия было впервые произведено русским химиком И. Авдеевым, который определил эквивалентный вес бериллия.

В технике бериллий является сравнительно молодым металлом. Недавно исполнилось 25 лет его службы на пользу технического прогресса. Бериллий применяется в металлургии. Добавление небольших количеств бериллия к некоторым металлам придает получаемым сплавам такие свойства, которыми не обладают ни сам бериллий, ни те металлы, в которые он добавляется. Так, например, добавка бериллия к меди в несколько раз повышает ее твердость, прочность и химическую устойчивость, не уменьшая при этом электропроводности. Сплав меди с 2 % бериллия (бериллиевая бронза) в два раза тверже нержавеющей стали и очень устойчив по отношению к механическим и химическим воздействиям. Из такого сплава изготовляют различные инструменты (зубила, головки молотков, шахтерские кирки и т. д.). В отличие от стальных изделий, бериллиевая бронза не высекает искр при ударе о камень или металл. Это очень важно при работе в шахтах, при открывании тары с воспламеняющимися веществами, когда случайная искра может явиться причиной сильного взрыва. Добавка 1 % бериллия к рессорной стали чрезвычайно повышает прочность и долговечность изготовляемых изделий. Особенно важным свойством является то, что пружины из такого сплава не теряют упругости даже при высокой температуре (красного каления).

С развитием техники высотных полетов сплавы бериллия с магнием, алюминием, титаном и другими металлами приобретают особое значение для постройки стратопланов и ракет.

Большую роль для увеличения долговечности и работоспособности машин и механизмов имеют свойства поверхностей их деталей. Облагораживание поверхности металла, повышение ее твердости и устойчивости имеет решающее значение для продолжительности «жизни» деталей. Эти качества поверхности деталей придает бериллий. Для этого изделие достаточно выдержать в порошке бериллия при 900–1000 °C, и поверхность станет вдвое тверже, чем у лучших сортов закаленной стали.

Способность бериллия более всех остальных устойчивых на воздухе металлов пропускать рентгеновские лучи используется в рентгенотехнике для изготовления «окошек» в рентгеновских трубках (так называются сделанные из бериллия части рентгеновских трубок, через которые пропускают лучи).

Бериллий занимает видное место в истории развития учения о строении атома к его ядра. В 1930 г. было обнаружено, что при бомбардировке бериллия ядрами атомов гелия (альфа-частицами) атомы бериллия начинают испускать «лучи», проходящие через слой свинца в несколько сантиметров толщины.

Природу бериллиевого излучения удалось установить Чедвику в 1932 г. Оказалось, что оно представляет собой поток частиц с массой приблизительно равной массе протонов, но в отличие от них не несущих электрического заряда. Эти частицы были названы нейтронами.

Отсутствие электрических зарядов чрезвычайно облегчает внедрение нейтронов в атомные ядра других элементов, делая нейтрон эффективным «снарядом» атомной артиллерии для осуществления ядерных реакций.

Простейшим источником нейтронов может служить стеклянная ампула с порошком бериллия в смеси с небольшим количеством радия. Наличие в такой ампуле 0,1 г соли радия обеспечивает получение нескольких сот тысяч нейтронов в каждую секунду.

Высокая огнеупорность окиси бериллия (температура плавления выше 2500 °C), а также большая инертность ее в нагретом состоянии ко многим расплавленным металлам и их солям используется для изготовления огнеупорных тиглей.

Окись бериллия входит в состав массы для пломбирования зубов — зубных цементов и ускорителей (катализаторов) при получении некоторых органических веществ. Окись бериллия находит также применение в люминесцентных лампах дневного освещения, излучающих желтовато-белый свет.

Все растворяемые соединения бериллия ядовиты, большинство из них обладает сладким, слегка вяжущим вкусом.

Без него не цветут растения

5. Бор — Borum (B)
От водорода до …? - i_015.png

Соединения бора были известны еще арабским алхимикам. В сочинениях легендарного Джабир-ибн-Хайяна, жившего около 721–815 гг. в Багдаде при известном калифе Гарун-аль-Рашиде, одно из этих соединений обозначалось словом «борак», «борака», что значило «блестеть». Возможно, что так называлось распространенное соединение бора — борная кислота — белое твердое вещество, плоские, чешуевидные кристаллы которого имеют характерный перламутрово-стеклянный блеск. Борную кислоту арабские алхимики получали из Тибета, где с древних времен известны озера, содержащие это вещество.

Из Тибета вывозилось и важнейшее соединение бора, большие, бесцветные и прозрачные кристаллы которого арабы называли бурой. От старинного названия буры — «боракс» произошло в конечном итоге название бора.

Бор — довольно распространенный элемент на Земле. Его в 5 раз больше, чем свинца, и в 250 раз больше, чем серебра. Бора в земной коре содержится 0,0005 %. Важнейшие соединения бора встречаются в воде озер Тибета (Китай), Тосканы (Италия), в некоторых горячих источниках. В вулканических местностях Италии борная кислота вместе с водяным паром выделяется из трещин земной коры. В окрестностях гавани Пандермы на побережье Мраморного моря, в Китае, Калифорнии, в Южной Америке находятся большие залежи минералов, содержащих бор.

Соединения бора входят в состав буровых вод нефтеносных месторождений и золы каменных углей. В незначительных количествах бор содержится в растительных (от 0,0001 до 0,1 % от веса сухого вещества) и животных организмах.

Несмотря на давнее знакомство человека с химическими соединениями бора, в более или менее чистом виде элемент был получен французскими учеными Гей-Люссаком и Тенаром только в 1808 г. Бор, весьма тугоплавкое вещество (температура плавления 2075 °C), известен в виде аморфного зеленовато-бурого порошка или мелких кристаллов, имеющих металлический блеск и по твердости почти не уступающих алмазу. При обычных условиях бор — исключительно инертное вещество, при высоких температурах он становится активным и легко соединяется с кислородом, хлором, бромом, серой и азотом.

В отличие от своих соединений — буры и борной кислоты, применявшихся в ряде отраслей промышленности (стекольной, керамической, кожевенной, а также в сельском хозяйстве и медицине), бор долгое время не использовался. Лишь сравнительно недавно бор стали применять в металлургии. Добавленный в сотых долях процента в сплавы алюминия, меди, никеля и др., бор значительно улучшает качества этих сплавов.

Прибавка небольших количеств бора в быстрорежущую сталь значительно повышает ее режущие свойства, что объясняется способностью бора давать при высоких температурах соединения с другими металлами (так называемые бориды,) обладающие большой твердостью и устойчивостью. Бор, как и бериллий, используется для повышения износоустойчивости поверхности стальных деталей. Насыщение поверхности стальных изделий бором (борирование) повышает устойчивость изделия к износу во много раз.

Сравнительно малая при обычной температуре электропроводность бора повышается более чем в сто раз при нагревании до 600 °C, что используется в технике полупроводниковых материалов.

Исключительные свойства соединений бора нашли отражение в научно-фантастических произведениях. Так фантастический звездолет, описанный в произведении И. А. Ефремова «Туманность Андромеды», имел двигатели из нитрида бора («борозоновые цилиндры погасли…»). Действительно, нитриды бора (борозоны) чрезвычайно прочны и тверды.

12
{"b":"260980","o":1}