Литмир - Электронная Библиотека
Содержание  
A
A

Во многих странах разрабатывались дуговые лампы с регуляторами, так как электрическая свеча была мало пригодна для прожекторных и тому подобных установок интенсивного освещения. В это же время Лодыгину в России, а несколько позже Лейн-Фоксу и Свану в Англии, Максиму и Эдисону в Америке удалось создать лампу накаливания, которые стали не только серьёзным конкурентом свечи, но и вытеснили её в довольно короткий срок.

В 1878 г., когда свеча была ещё в блестящем периоде своего применения, Яблочков решается ещё раз поехать на родину, чтобы внедрить там своё изобретение...

Но это было связано с большими жертвами: Яблочков должен был выкупить у Французского общества русскую привилегию и за это уплатить около миллиона франков. Он решился на это и приехал в Россию без средств, но полный энергии и надежд.

В России на этот раз к его изобретению отнеслись с большим интересом. Нашлись средства для финансирования предприятия. Ему пришлось заново создавать мастерские, вести многочисленные финансовые и коммерческие дела.

С 1879 г. в столице появилось много установок со свечами Яблочкова, из которых первая осветила Литейный мост. Отдавая дань времени, Яблочков в своих мастерских наладил также небольшое производство ламп накаливания. Однако ни коммерческая деятельность, ни успешно подвигавшееся конструирование электрической машины, ни создание им электротехнического отдела при Русском техническом обществе, вице-председателем которого Павел Николаевич был избран, не приносили ему удовлетворения.

Много сил он приложил для основания первого русского электротехнического журнала «Электричество», который стал выходить с 1880 года. 21 марта 1879 г. он сделал в Русском техническом обществе доклад об электрическом освещении. Общественность почтила его присуждением золотой медали Общества за то, что «он первый достиг удовлетворительного разрешения на практике вопроса об электрическом освещении»”.

Однако эти внешние знаки внимания были недостаточны для того, чтобы создать Яблочкову хорошие условия работы. Павел Николаевич видел, что в отсталой России начала 1880-х гг. слишком мало возможностей для реализации его технических идей, в частности для производства построенных им электрических машин.

Его вновь потянуло в Париж, где ещё так недавно счастье ему улыбнулось. Вернувшись в Париж в 1880 г., Яблочков вновь поступил на службу в Общество по эксплуатации его изобретений, продал Обществу свой патент на динамо-машину и стал готовиться к участию в первой Всемирной электротехнической выставке, намеченной к открытию в Париже в 1881 г.

В начале 1881 г. Яблочков оставляет службу в Обществе и полностью отдаётся конструкторской работе.

На электротехнической выставке в Париже 1881 г. изобретения Яблочкова получили высшую награду: они были признаны вне конкурса. Павел Николаевич был назначен членом международного жюри по рассмотрению экспонатов и присуждению наград.

Во время этой выставки Яблочкову представилась возможность убедиться, что американскому изобретателю Т. Эдисону удалось настолько удачно усовершенствовать лампу накаливания, что её можно было применять для массового использования. Не оставалось у Яблочкова и сомнений, что электрическая свеча должна уступить место лампе накаливания.

Сама же выставка 1881 г. была триумфом новой лампы накаливания: электрическая свеча стала клониться к своему закату.

С этого времени Яблочков посвятил себя работам над генераторами электрического тока — динамо-машинами и гальваническими элементами. К источникам света он больше никогда не возвращался.

Действительно, с этого времени лампа накаливания начала всё больше и больше применяться для освещения и через несколько лет совершенно вытеснила электрическую свечу.

В последующие годы Яблочков получил ряд патентов на электрические машины, как, например: усовершенствованный электродвигатель; магнитоэлектрическая машина переменного тока без вращательного движения; «клиптическая» машина переменного тока, ротор которой совершал сложное качательное движение; машина переменного тока с вращающимся индуктором, полюсы которого расположены по винтовой линии, и др.

Хотя большая часть электрических машин Яблочкова не нашла практического применения, в основу их конструкции были положены весьма интересные идеи. Так, в магнитоэлектрической машине переменных токов (французский патент № 115829) не было вращающихся частей, отсутствовали щетки, устройство со скользящими контактами в коллекторе. Способ получения переменного тока посредством такой машины был прост, но для получения электродвижущей силы большой величины число витков провода на катушках должно быть очень большим, так как скорость перемещения обмоток в магнитном поле ограничена самой конструкцией машины.

Поэтому Яблочков переходит к другой конструкции (французский Патент № 119702). Эта машина, названная магнитодинамоэлектрической, представляет большой интерес и характеризует прогресс идей Яблочкова в области электромашиностроения.

Эта машина имеет все черты современного индукторного генератоа, широко применяемого для получения токов высокой частоты. Таким образом, Яблочков в 1877 г. изобрёл индукторную машину, нашедшую применение в технике примерно 35 лет спустя.

Работы Яблочкова в области гальванических элементов и аккумуляторов обнаруживают оригинальность и прогрессивность его замыслов. Главная цель, которую он ставил перед собой в работах над электрохимическими источниками тока, заключалась в том, чтобы создать мощный и экономичный источник электроэнергии. Яблочков разработал несколько систем таких источников тока. Построенные им элементы с отрицательным электродом из угля, положительным из железа или платины и с электролитом из расплавленной селитры представляют собою первые разновидности так называемых топливных элементов.

В своей статье «Гальванический элемент, в котором расходуемый электрод состоит из угля» П. И. Яблочков описал направление, в котором он будет развивать поиски:

«Уголь, сжигаемый в паровой машине, производит работу, которая, будучи превращена в электричество с помощью магнитоэлектрических машин, даёт электричество по гораздо более дешёвой цене, чем все химические источники тока, существовавшие до нашего времени. Это соображение толкнуло меня на мысль получать электричество, химически действуя непосредственно на уголь. Но уголь, как каждому известно, не подвергается химическому действию какой-либо жидкости при обыкновенной температуре. Мне пришлось поэтому построить электрохимический элемент с горячей жидкостью».

Так он изложил идею одного из типов — первого в технике — топливного элемента. Другая значительная группа элементов обладает отрицательным электродом из натрия или калия. В этих элементах использована способность упомянутых металлов окисляться на открытом воздухе. В результате может быть получен гальванический элемент без жидкости.

Работы Яблочкова по натриевому элементу положили начало новому направлению в создании электрохимических источников тока высокой удельной мощности.

Несколько работ Яблочкова посвящены так называемым автоаккумуляторам. Это наименование было дано трёхэлектродному элементу, в котором были применены легко окисляемый металл (например, цинк, железо, натрий) и тело из менее окисляемого и способного собирать водород вещества (например, свинец, уголь). В плоский сосуд из свинца или парафинированного угля помещались кусочки окисляемого металла; сосуд заполнялся до краёв древесными опилками или другой пористой массой. В качестве электролита служила щелочь (в случае натрия) или раствор хлористого кальция. При действии пары натрий-уголь промежуточный электрод заряжается местными токами и покрывается водородом. Этот водородный электрод вместе с третьим телом, играющим роль кислородного электрода, образуют вторую электрическую пару, также дающую электрический ток.

Итак, Яблочков последовательно изыскивал возможности применения химической энергии для цепей электротехники сильных токов. Путь, которым он шёл, — революционный не только для своего времени.

35
{"b":"188325","o":1}