Литмир - Электронная Библиотека
Содержание  
A
A

Сам Тарский кратко обсуждает два способа [315] связанные с применением конечных последовательностей переменной длины вместо бесконечных последовательностей, но он указывает и на некоторые недостатки этих альтернативных способов. Первый из них ведет к «значительным [или „довольно серьезным"] осложнениям» (ziemlich bedeutenden Komplikationen) при определении удовлетворения (Определение 22), в то время как недостаток второго состоит в «некоторой искусственности» (eine gewisse Kunstlichkeit), поскольку он приводит к определению истины (Определение 23 [р. 195 англ. перевода]) с помощью понятия «пустой последовательности», или «последовательности нулевой длины»[316]. В своих замечаниях я хочу обратить внимание на то, что сравнительно небольшое изменение процедуры Тарского позволяет нам оперировать с конечными последовательностями, не сталкиваясь с осложнениями или искусственностями (например, пустыми последовательностями), которые имел в виду Тарский. Этот способ позволяет нам сохранить весьма естественную процедуру, предусмотренную условием (6)Определения 22 Тарского (р. 193 англ. перевода), и таким образом избежать обходного пути, связанного с введением отношений — или свойств, — имеющих порядок, равный числу свободных переменных рассматриваемой пропозициональной функции. Предлагаемое мною изменение способа Тарского достаточно незначительно, но ввиду того, что Тарский ссылается на другие его варианты, имеющие значительные недостатки, а не на данный вариант, может быть, стоит описать и это небольшое улучшение[317].

Для этой цели полезно будет неформально упомянуть, во-первых понятие номера места n (place number n) (или n-го места) в конечной последовательности объектов, а во-вторых, понятия длины конечной последовательности f, то есть число мест в f (символически Np(f))равное самому большому номеру места в ней, и сравнения конечны последовательностей по их длине. Упомянем, в-третьих, что объект может занимать в последовательности определенное место — скажем, n-е, -и тогда его можно назвать [n-м индивидом или] n-м объектом, или nчленом рассматриваемой последовательности. Следует отметить, что один и тот же объект может занимать разные места в одной последовательности так же как и в разных последовательностях[318].

Как и Тарский, я использую символы "f1", "f2", ... , "fi", "fk"» ... "fn" в качестве имен объектов, занимающих первое, второе, i-е, k-e, ... n-е места в последовательности f. Я пользуюсь обозначениями Тарского за тем исключением, что [по типографским соображениям] использув "Pky" для обозначения обобщения [или квантификации по общности выражения y по переменной vk[319]. Принимается, что к Определению (11)[320] Тарского добавлено Определение выражения «vk входит в пропозициональную функцию x» — это предположение ни в коей мере не выводит нас за пределы методов Тарского и фактически в неявном виде присутствует в процедурах самого Тарского.

Теперь мы можем заменить Определение 22 Тарского [р. 193]. Мы заменим его двумя определениями — предварительным Определением 22a и Определением 22b, которое соответствует собственному определению Тарского.

Определение 22а. Конечная последовательность объектов f адекватна пропозициональной функции x(или достаточно длинна относительно x), если и только если

для каждого натурального числа n,

если vn входит в x, то число мест в f по крайней мере равно n (то есть Np(f) ⩾ n).

Определение 22b [321].

Последовательность f удовлетворяет пропозициональной функции x, если и только если

f — конечная последовательность объектов,

xпропозициональная функция, и

(1) f адекватна x,

(2) x соблюдает одно из следующих четырех условий:

(α) Существуют натуральные числа i и k такие, что x= li,k и fi ⊂ fk.

(β) Существует пропозициональная функция y такая, что x = y, и f не удовлетворяет y.

(γ) Существуют две пропозициональные функции у и z такие, что x = y + z и f удовлетворяет либо y, либо z, либо обеим.

(δ) Существует натуральное число k и пропозициональная функция y такая, что

(a) x = Pky,

 (b) любая конечная последовательность g, длина которой равна f, удовлетворяет y, если только g соблюдает следующее условие: для любого натурального числа n, если nномер места в f и n≠k, то gn = fn.

Теперь Определение 23 Тарского [р. 193] можно заменить любым из двух следующих эквивалентных[322] определений:

Определение 23+. x — истинное высказывание (то есть x∈Wr), если и только если (а) x — высказывание (xAs) и (b) любая конечная последовательность объектов, адекватная x, удовлетворяет x.

Определение 23++. x — истинное высказывание (то есть x∈Wr), если и только если (a) x — высказывание (x∈As) и (b) существует по крайней мере одна конечная последовательность объектов, удовлетворяющая х.

Можно заметить, что Определение 23++ не требует предположения об адекватности упоминаемой последовательности. Можно также заметить, что в Определении 23+ (которое в точности соответствует определению Тарского) — но не в 23++ — условие (а) можно заменить условием «x — пропозициональная функция», достигая тем самым определенного обобщения, в частности, на пропозициональные функции со свободными переменными, такими как, например, функция li,i, то есть на универсально-значимые (allgemeingultige [верные для любой индивидуальной предметной области]) пропозициональные функции[323].

Аналогичным образом определение 23++, если распространить его на функции, приводит к понятию удовлетворимой (erfullbare) пропозициональной функции.

В заключение скажу, что в применении к эмпирической теории (по крайней мере частично формализованной) и особенно к неквантифицированным пропозициональным функциям такой теории, определение выполнения [или удовлетворения], то есть Определение 22Ь, выглядит совершенно «естественным» с интуитивной точки зрения, в основном потому, что оно обходится без бесконечных последовательностей [324].

Приложение 1

Бадья и прожектор: две теории познания{57}

Цель этой работы — подвергнуть критике широко распространенный взгляд на цели и методы естественных наук и выдвинуть альтернативную точку зрения.

вернуться

315

Первый из этих альтернативных способов очерчен Тарским в примечании 40 на S. 309 и далее [р. 191 англ. перевода, прим. 1]. (Там не говорится явно, что этот способ можно использовать для избежания бесконечных последовательностей, но ясно, что его можно для этого использовать). Второй метод описывается в примечании 43 на S. 313 и далее [р. 195 англ. перевода, прим. 1]. Способ, предложенный Тарским в этом примечании, технически слегка отличный от примененного Тарским в основном тексте, используется Карнапом в его «Введении в семантику» (Сатар R. Introduction to Semantics, 1942, pp.47 и далее [точнее pp. 45-48]). Хотя Карнап ссылается на Тарского, он упускает из вида то, что Тарский предвидел этот конкретный способ. (В прим. 7 на S.368 [р. 245 англ. перевода, прим. 2] Тарский указывает еще и третий способ — очень простой, но безусловно в высшей степени искусственный в понимании Тарского; более того, этот способ относится только к определению истины как таковому, а не к определению выполнения [удовлетворения], которое интересно само по себе).

вернуться

316

 Карнап также использует это искусственное понятие.

вернуться

317

 Основное различие между моим способом и способами, предлагаемыми Тарским (упомянутыми ранее в прим. 3) состоит в следующем. Тарский предлагает ставить в соответствие данной функции (либо бесконечные последовательности, либо) конечные последовательности определенной (зависящей от данной функции) длины, в то время как я использую конечные последовательности «достаточной длины» (Определение 22а), то есть не слишком короткие для рассматриваемой функции. Соответственно, мои конечные последовательности могут быть любой длины (свыше определенного минимума, зависящего от рассматриваемой функции). Но допущение конечных функций любой длины (если этого достаточно для наших целей) не приводит ни к какой неоднозначности, поскольку мы легко получаем теорему (ср. Лемму А.Тарского на S. 317 [р. 198 англ. перевода]), согласно которой, если f удовлетворяет x, то всякое g, являющееся расширением f, также удовлетворяет x (где g есть расширение f, если и только если для каждого fi существует gi такое, что gi = fi). Таким образом, эта теорема говорит, что нам достаточно рассматривать только самые короткие конечные последовательности из тех, которые адекватны рассматриваемой функции (конечно, всей рассматриваемой сложной функции, в отличие от ее компонентов).

вернуться

318

Объекты (things) [так я называю их здесь; я мог бы называть их, как Тарский «индивидами», если бы не то, быть может, слегка запутывающее обстоятельство, что «индивиды» Тарского представляют собой индивидуальные классы исчисления классов] рассматриваемые Тарским в этом разделе его работы, суть классы; учитывая сказанное Тарским в параграфах 4 и 5, я буду говорить здесь о «последовательностях объектов» а не о последовательностях классов, имея в виду, что для любых объектов fi и fk, определено отношение вхождения fi ⊂ fk.

вернуться

319

Ср. Определение 6 Тарского на S. 292 [р. 176 англ. перевода].

вернуться

320

Tarski A. Ibidem, S. 294 [р. 178 англ. перевода]. Тарский явным образом определяет только выражение «переменная входит свободно в пропозициональную функцию x» [или Vf есть свободная переменная поопозипиональной функции

вернуться

321

Это в точности напоминает Определение 22 Тарского [р. 193], за исключением того, что к условию Тарского добавлен пункт (1) (чтобы заменить бесконечные последовательности конечными), и что наш пункт (6) содержит небольшое изменение, поскольку в нем говорится о длине fд). [Перевод "erfullen" как «удовлетворять» имеет тот недостаток, что в определении выражения «f удовлетворяет x» используется интуитивное представление о том, что «x соблюдает (то есть удовлетворяет) такие-то условия». Но эти два «удовлетворяет» технически совершенно различны, хотя интуитивно и очень близки. В немецком тексте на S. 311 не проводится никакого терминологического различия, но на S. 312 в сноске, соответствующей сноске 1 на р. 193 английского издания, имеет место различие  между «erfьllt» и «befriedigt». В Определении 22, конечно, нет никакого круга].

вернуться

322

Их эквивалентность следует из соображений Тарского; ср. Ibidem, S. 313, строки с 13 по 16 [р. 194, строки с 12 по 15 англ. перевода].

вернуться

323

Ср. Ibidem, S. 320 [р. 201], Определение 27 и последующие.

вернуться

324

 Мы можем использовать его, например, чтобы определить случай выполнения некоторого закона (записанного не как обобщение, то есть записанного без квантора общности впереди) как конечную последовательность объектов, удовлетворяющих этому закону, или — что мне кажется более важным — чтобы определить опровергающий пример для любой (открытой или замкнутой) пропозициональной функции как конечную [и адекватную] последовательность объектов, не удовлетворяющую ей.

94
{"b":"180963","o":1}