Как это ни странно, совершенно такая же история произошла и со мной самим на Учёном совете Математического института имени В.А. Стеклова. В течение многих лет председателем этого Совета был Иван Матвеевич Виноградов — теоретико-числовик, который никогда не мог правильно прочитать название диссертации, если там встречалось трудное слово «дифференциальные уравнения». Он всегда читал «диофантовы» вместо «дифференциальные» — теоретико-числовику так проще. (Перепутав вдобавок фамилию оппонента, Виноградов оправдывал себя словами: «Ну, ничего, не велика птица».)
Прошло много лет, Виноградов умер, и вот однажды объявлять название диссертации пришлось мне. Конечно, я сразу вспомнил об ошибках Виноградова. Но диссертация была «об одном свойстве некоторых диофантовых уравнений». Когда я дошёл до этого названия, то прочел его как «об одном свойстве некоторых дифференциальных уравнений».
Уроки французского и английского в США, Франции и Англии привели меня к многим парадоксальным выводам. Например, студентам по английской литературе в английском Кембридже пришлось объяснять, кто такой Шелли. В Гарварде студентка по истории искусств так отвечала по-французски преподавателю:
— Были ли вы в Европе?
— Да.
— Посетили ли Францию?
— Да.
— Заехали ли в Париж?
— Да.
— Видели ли Собор Парижской Богоматери?
— Видела.
— Понравился ли он вам?
— Нет!
— Почему?
— Он такой старый!
Французская культура ближе к привычной нам. Но в 1836 году Скриб в своей речи при вступлении во французскую Академию[3] ругал Мольера за то, что тот плохо отразил основные проблемы своей эпохи в своих пьесах — например, совершенно не упомянул об отмене Нантского эдикта (уравнявшего протестантов в правах с католиками). Французский «Словарь глупостей», из которого я взял эту речь, указывает в примечании, что Нантский эдикт был отменен через 12 лет после смерти Мольера. Впрочем, французские философы XIX века ругали Папу Римского за то, что он «сжёг Галилея».
От коллег (и во Франции, и в английском Кембридже) я слышал поправку к этому обвинению: «Здесь, конечно, имя Галилея стоит по ошибке: речь шла, на самом деле, о Тихо Браге».
Имя Джордано Бруно знают практически только в России. Папа Римский сказал мне в 1998 году, что Бруно невозможно амнистировать, пока не подтверждена его еретическая теория множественности обитаемых миров (не противоречащая, по словам Бруно, Святому Писанию): «Вот найдите инопланетян, тогда можно будет обсудить!»
Нейтрино, нейтроны и Бруно Понтекорво
Недавно Академия рысей (Линчей)[4] посвятила заседание памяти скончавшегося в 1993 году Бруно Понтекорво — физика, жившего с 1950 года в России, работавшего долгие годы в Дубне в Институте ядерной физики.
Докладчик рассказал о происшествии, случившемся с Понтекорво много лет назад. Блуждая по окрестностям Дубны, Понтекорво заблудился, но к вечеру нашёл трактор, и тракторист взялся его подвезти. Желая быть любезным, тракторист спросил, чем именно Бруно занимается в Институте. Тот честно ответил «нейтринной физикой» (одним из создателей которой Понтекорво стал уже в 30-е годы).
Тракторист вежливо сказал:
— Вы хорошо говорите по-русски, но всё же есть некоторый акцент. Физика не нейтринная, а нейтронная!
Рассказывая в Италии об этом происшествии, Бруно добавлял:
— Надеюсь, я доживу до времени, когда уже никто не будет путать нейтроны с нейтрино!
Комментируя этот рассказ, докладчик заметил:
— Теперь (хотя Бруно до этого не дожил) его предсказание, пожалуй, сбылось: сегодня люди ничего не знают не только о нейтрино, но и о нейтроне!
Читая в Дубне в 2000 году лекцию для учителей «Нужна ли в школе математика?», я, ссылаясь на описанное выше предсказание Понтекорво, добавил: «Видимо, все эти прогнозы относятся не только к нейтрино, но и ко всей науке, в том числе и к математике — наши сегодняшние дискуссии о преподавании математики станут скоро бессмысленными потому, что никто в мире не будет уже знать, чем отличается треугольник от трапеции!».
Правительства всех стран наступают сейчас на науку, культуру и образование (этот процесс американизации часто неправильно называют глобализацией). Л.H. Толстой писал: «Сила правительства держится на невежестве народа, и оно знает это, а потому всегда будет бороться против образования».[5]
Как математику, мне особенно приятно вспоминать представленную Бруно Понтекорво в ДАН (Доклады Академии наук СССР) статью «О размерностях физических величин» Ораса де Бартини. Она начиналась словами: «Пусть А есть унарный и, следовательно, унитарный объект. Тогда А есть А, поэтому…», а заканчивалась благодарностью сотруднице «за помощь в вычислении нулей пси-функции».
Эту зло пародирующую псевдоматематический вздор статью (опубликованную, помнится, около 1 апреля) студенты моего поколения знали давно, так как её автор — замечательный итальянский авиаконструктор, работавший в России совсем в другой области науки[6] — пытался опубликовать её в Докладах уже несколько лет. Но академик Н.Н. Боголюбов, которого он об этом просил, не решился представить эту заметку в ДАН, и только избрание Бруно Понтекорво действительным членом Академии сделало эту очень полезную публикацию возможной.
Но, к сожалению, и Доклады, и другие математические журналы до сих пор полны «унарными объектами» и подобным вздором. Последнее время, правда, РАН начала передавать права на издание английской версии своих научных журналов издателю «Пентхауза» (видимо, думая: «Туда им и дорога!»).
Как отличить хорошую математическую работу от плохой
Когда я стал заниматься в библиотеке Института Анри Пуанкаре в Париже в 1965 году, французские математики встретили меня очень радушно. Со времен террора в Париже обязательно называть друг друга на «ты», и в кругах интеллигенции этот обычай свято соблюдается до сих пор.
— Я хочу тебя научить, как отличить хорошую математическую работу от плохой, — сказал мне один очень хороший математик. — Через месяц после того, как моя работа вышла, я захожу в библиотеку Института и отыскиваю нужный номер журнала на полке. Если статья ещё не украдена, значит она была плохая!
Вероятно, не из-за этого Институт Пуанкаре вскоре закрыли. Сейчас, после перерыва в пару десятилетий, он снова работает, но я не знаю, сохранила ли библиотека прежние патриархальные нравы: ксерокс и электроника сделали вырезывание страниц с нужной статьей старомодным.
Радушие французских коллег простиралось до того, что они приглашали меня на конгресс Бурбаки. Когда же я ответил, что совершенно не сочувствую этой секте, то мне объяснили, что они считают меня «московским бурбакистом» (вероятно, напрасно: для меня примеры всегда важнее общих положений, а индукция предпочтительнее дедукции).
В марте 2001 года я даже удостоился двухчасовой публичной дуэли с представлявшим Бурбаки крупнейшим французским математиком Ж.-П. Серром в Институте Пуанкаре в Париже. Серр доказывал, что нуль — положительное число, так как он больше нуля (по Бурбаки это так!). Я же отстаивал мнение, что математика — часть физики и, как и физика — наука экспериментальная, отличающаяся только тем, что в физике эксперименты стоят обычно миллиарды долларов, а в математике — единицы рублей. Завершая дуэль, Серр сказал, что математика — наука столь замечательная, что двое со столь полярно противоположными взглядами не только оба остались живы после дуэли, но и могут продолжать плодотворно сотрудничать, даже если ни англосаксы, ни русские не признают, что каждое вещественное число больше самого себя, как это очевидно любому французу. Вероятно, именно снобизм «чистых» математиков и подобных им «экспертов» других специальностей заставляет общество и правительства пренебрежительно относиться к фундаментальной науке и поощрять только так называемые «прикладные науки». Например, германские физики были ближе всех к атомной бомбе в начале Второй мировой войны, но атомные исследования были у них сочтены чистой наукой, не Имеющей (и не будущей иметь в обозримое время) прикладного значения. То же происходило и у нас. Ленинградский физтех в 1936 году осуждался за занятия «оторванными от практики проблемами» вроде ядерной физики.