Литмир - Электронная Библиотека
Содержание  
A
A

Направляя звук не вниз, а вперед или в стороны, можно при его помощи определить, нет ли около корабля опасных подводных скал или глубоко погруженных в воду айсбергов.

Звуковая волна

Если бы звук распространялся мгновенно, то все частицы воздуха колебались бы, как одна. Но звук распространяется не мгновенно, и объемы воздуха, лежащие на линии распространения, приходят в движение по очереди, как бы подхватываются волной, идущей от источника. Так же точно щепка лежит спокойно на воде до тех пор, пока круговые водяные волны от брошенного камешка не подхватят ее и не приведут в колебание.

Остановим наше внимание на одной колеблющейся частице и сравним ее поведение с движением других частиц, лежащих на той же линии распространения звука. Соседняя частица придет в колебание немного позже, следующая – еще позже. Запаздывание будет нарастать, пока, наконец, мы не встретимся с частицей, отставшей на целый период и поэтому колеблющейся в такт с исходной. Так отставший на целый круг неудачный бегун может пройти линию финиша одновременно с лидером. На каком же расстоянии встретим мы точку, колеблющуюся в такт с исходной? Нетрудно сообразить, что это расстояние λ равно произведению скорости распространения звука сна период колебания Т. Расстояние λ называется длиной волны,

λ = сТ.

Через промежутки λ мы будем встречать колеблющиеся в такт точки. Точки, находящиеся на расстоянии λ/2, будут совершать движение одна по отношению к другой, как предмет, колеблющийся перпендикулярно, к зеркалу, по отношению к своему изображению.

Если изобразить смещение (или скорость, или звуковое давление) всех точек, лежащих на линии распространения гармонического звука, то получится опять синусоида.

Не следует путать графики волнового движения и колебаний. Рис. 117 и 118 очень похожи, но на первом по горизонтальной оси отложено расстояние, а на втором – время. Один рисунок представляет собой временную развертку колебания, а другой – мгновенную «фотографию» волны. Из сопоставления этих рисунков видно, что длина волны может быть названа также ее пространственным периодом: роль Тво времени играет в пространстве величина λ.

Физика для всех. Движение. Теплота - pic323_01.png
Физика для всех. Движение. Теплота - pic323_02.png

На рисунке звуковой волны смещения частицы отложены по вертикали, а направлением распространения волны, вдоль которого отсчитывается расстояние, является горизонталь. Это может навести на неверную мысль, что частицы смещаются перпендикулярно к направлению распространения волны. В действительности частицы воздуха всегда колеблются вдоль направления распространения звука. Такая волна называется продольной.

Слышимый звук

Какие же звуковые колебания воспринимаются человеком на слух? Оказывается, ухо способно воспринимать лишь колебания, лежащие примерно в интервале от 20 до 20 000 Гц. Звуки с большой частотой мы называем высокими, с малой частотой – низкими.

Какие же длины волн соответствуют предельным слышимым частотам? Так как скорость звука примерно равна 300 м/с, то по формуле λ = сТ= с/ν находим, что длины слышимых звуковых волн лежат в пределах от 15 м для самых низких тонов до 3 см для самых высоких.

Каким же образом мы «слышим» эти колебания?

Работа нашего органа слуха до сих пор не выяснена до конца. Дело в том, что во внутреннем ухе (в улитке – канале длиной несколько сантиметров, заполненном жидкостью) имеется несколько тысяч чувствительных нервов, способных воспринимать звуковые колебания, передающиеся в улитку из воздуха через барабанную перепонку. В зависимости от частоты тока сильнее всего колеблется та или иная часть улитки. Хотя чувствительные нервы расположены вдоль улитки так часто, что возбуждается сразу большое их число, человек (и животные) способен – особенно в детстве – различать изменения частоты на ничтожные ее доли (тысячные доли). Каким образом это происходит, до сих пор точно не известно. Ясно только, что важнейшую роль здесь играет анализ в мозгу раздражений, приходящих от множества отдельных нервов. Придумать механическую модель, которая – при той же конструкции – столь же хорошо различала бы частоту звука, как и ухо человека, пока еще не удалось.

Иные люди обладают абсолютным слухом: вы возьмете на рояле сложный аккорд, а слушатель скажет, какие клавиши вы ударили. Значит, его ухо способно разлагать сложный звук на его гармонические составляющие.

Музыка

Отличие музыкального звука от шума уже иллюстрировалось кривыми звукового давления. Простой музыкальный тон создается периодическим колебанием определенной частоты. Сложные звуки представляют собой сочетания чистых тонов.

Оркестр музыкантов воспроизводит почти все слышимые частоты. Диапазон рояля охватывает тона с частотами примерно от 25 до 4000 Гц.

Не все комбинации звуков доставляют удовольствие слушающему. Оказывается, приятное ощущение создают такие звуки, частоты колебаний которых находятся в простых отношениях. Если звуковые частоты находятся в отношении 2 : 1, то говорят об октаве, если 5 : 4 – о большой терции, отношение 4 : 3 дает кварту, а 3 : 2 – квинту. Ощущение благозвучности теряется, если частоты звуковых колебаний нельзя представить такими простыми отношениями. Тогда музыканты говорят о диссонансе. Ухо хорошо ощущает сочетания различных тонов. Поэтому люди даже с посредственным слухом чувствительны к диссонансам.

При помощи бесклавишных инструментов – типа скрипки – музыкант может взять любой тон и дать звучание любому сочетанию тонов.

В таком инструменте, как рояль, дело обстоит иначе. Струны рояля настроены на определенные частоты, удар о клавиши не может изменить тональности звука. Клавиатура рояля включает семь полных октав. Нижнее «до» дает тон с частотой 32,64 Гц, а верхнее – с частотой 32,64 × 2 7≈ 4178 Гц. Проблема состоит в том, как разделить октавы, т.е. какие промежуточные тона следует ввести, чтобы удовлетворить двум условиям. Во-первых, частоты должны находиться в наивозможно простых отношениях. Во-вторых, надо разделить октаву на равные интервалы (отношения между частотами), так как только в этом случае можно играть одну и ту же мелодию, начиная с любой ноты октавы (та же мелодия в другом тоне). Строго говоря, эти два требования противоречивы. Приближенно они осуществляются при использовании так называемого темперированного строя.

Посмотрим, что получится, если разделить октаву на 12 равных интервалов. Каждый из этих интервалов будет равен 2 1/12= 1,059. Это значит, что отношение двух соседних тонов будет равно этому числу. Выпишем теперь следующие цифры:

Физика для всех. Движение. Теплота - pic326_01.png

К полному своему удовлетворению музыкант замечает, что арифметика решает его задачу: октава разделена на строго равные интервалы, и в то же время отношения многих гонов весьма близки к отношениям простых чисел. Мы находим здесь и квинту (7), и кварту (5), и большую терцию (4), так как приблизительно 1,498 ≈ 3/2; 1,260 ≈ 5/4, а 1,335 ≈ 4/3. Превосходно обстоит дело и в других случаях, где разница не превосходит 1 %: 1,414 ≈ 7/5; 1,122 ≈ 9,8; 1,587 ≈ 8/5; 1,682 ≈ 5/3; 1,888 ≈ 17/9, и только первый интервал 1,059 ≈ 18/17 дает явный диссонанс.

Небольшие отклонения от чистого строя (т.е. такого, в котором отношения частот в точности равны отношению целых чисел) для слуха мало заметны, и темперированный строй рояля получил распространение.

Тембр звука

Вы видели, как настраивают гитару – струну натягивают на колки. Если длина струны и степень натяжения подобраны, то струна будет издавать, если ее тронуть, вполне определенный тон.

72
{"b":"152779","o":1}