Электропривод
До сих пор мы говорили в основном о том, как получать и транспортировать электроэнергию, и лишь вскользь – о ее использовании. Настало время поговорить на эту тему более основательно.
Главное преимущество электрической энергии в ее сравнительно легкой транспортировке для использования в отдалении от места получения, для превращения ее там снова в механическую или в любой другой вид энергии.
Цепочка превращения может быть разной и зависит от уровня развития техники и экономической целесообразности. Согласно закону сохранения, энергия не возникает из ничего и не исчезает бесследно. Она может только превращаться из одного вида в другой. Это мы помним. И вся история цивилизации – это борьба за энергию и превращение ее человеком в нужные ему формы. Костер доисторического человека – превращение энергии, накопленной топливом, в тепло. «Огромная наипаче» баратея Василия Петрова – превращение химической энергии в электрическую и электрической – в свет.
На гидро– или теплоэлектростанциях происходит превращение механической энергии падающей воды или пара в электрическую. Электроэнергия идет по ЛЭП к потребителю, и потребитель (мы с вами) использует ее по своему желанию: превращает в тепло, свет или с ее помощью приводит в действие необходимые ему машины и механизмы. Пожалуй, одним из первых таких примеров можно считать электродвигатель Бориса Семеновича Якоби – типичный электропривод.
Электропривод – чрезвычайно распространенное устройство для преобразования электроэнергии. Но прежде чем перейти к его описанию, вспомним, что такое привод вообще. Начнем с определения. Привод – это устройство для приведения в действие машин или механизмов. Состоит оно из источника энергии, устройства для ее передачи и из управления. Производителем энергии в приводе может служить человек или лошадь (слон, буйвол, любой источник мускульной силы), гидравлический, тепловой или электрический двигатели, а также накопители механической энергии: пружины, гири, маховики и т. д.
Привод может быть групповым, индивидуальным и многодвигательным. В первом движение от одного двигателя через трансмиссии передается группе рабочих машин. Индивидуальным привод становится тогда, когда каждая рабочая машина снабжена собственным двигателем с передачей движения. В многодвигательном приводе уже не вся рабочая машина, а ее отдельные механизмы приводятся в движение отдельными же двигателями через свои системы передачи.
Электродвигатель группового привода в заводском цеху XIX века
Примером самого раннего механического привода являлось, наверное, водяное колесо. Наиболее же распространенным видом привода на любом производстве до изобретения электродвигателя была паровая машина. Она крутила вал со шкивами, от которых шли ременные передачи на станки. Сегодня даже трудно себе представить такой цех с бесконечными ременными передачами.
С появлением электродвигателей наметились два пути развития. Первый – замена единого большого и мощного двигателя (паровой машины), работавшего на трансмиссию. И второй путь – строительство и применение индивидуальных двигателей, малых и больших, в зависимости от обслуживаемых механизмов.
Промышленники во всем мире сразу поняли преимущества электрической энергии по сравнению с паросиловыми установками. А понимаем ли мы ее сегодня так же наглядно?
Только представьте: для обеспечения средней мощности в 200 000 кВт, каковую сегодня легко дает энергетический блок, состоящий из одного котла, одной турбины и одного электрогенератора, нам пришлось бы установить в котельной станции 300 средних паровых котлов конца XIX века и 10 громаднейших, лязгающих поршнями паровых машин.
Первые блок-станции предназначались исключительно для питания осветительных приборов. Однако устройство центральных электростанций с последующим распределением энергии уже дало основание для создания промышленного электропривода.
Уже первые опыты применения электродвигателей в системе групповых приводов существенно изменили ситуацию на производстве. Не нужны стали собственные гидро– и тепловые станции с водяными колесами и паровыми котлами. Дорогостоящие и ненадежные ременные передачи заменились электрическими проводами, хотя при групповом электроприводе внешний вид цеха изменился мало.
В конце XIX века среди сторонников группового и индивидуального приводов было немало споров. Одни считали, что переход к малым индивидуальным двигателям усложнит производство и продукция станет соответственно дороже. Другие настаивали на уменьшении потерь при механических передачах, на независимости размещения оборудования от центрального распределения, на повышении безопасности и общей культуры производства, а следовательно, и на повышении производительности труда. Почти четверть века шли эти препирательства, пока индивидуальный привод не победил полностью.
В 50-60-е годы XX столетия в системах управления приводом стали применяться полупроводниковые приборы. Новая силовая электроника существенно повлияла на многие области техники, в том числе и на схемы питания и управления электропривода. Особенно большую роль сыграли мощные тиристоры. Они позволили отказаться от громоздких и ненадежных ртутных выпрямителей и тиратронов.
Тиратронами (от греческого «дверь или «вход» – thyra и (элек)трон) назывались ионные приборы тлеющего разряда (с холодным катодом) или несамостоятельного дугового разряда (с подогревным катодом) и управляющими сетками. Тиратроны тлеющего разряда применялись в качестве реле, а тиратроны дугового разряда – в качестве управляемых вентилей.
В конце ХХ столетия тиратроны были вытеснены полупроводниковыми тиристорами, выполняющими те же функции.
Одна из важнейших задач в проектировании и создании электропривода – его силовое управление. В 90-х годах ХХ века ряд фирм выпустили силовые транзисторы на немыслимые, казалось бы, токи силой до 600 А при напряжениях до 1200 В. Эти приборы позволили создать новые управляющие схемы и устройства для регулируемого привода.
Современный регулируемый элекропривод – сложная комплексная система, которая является основным поставщиком механической энергии для большинства агрегатов, связанных с движением. Единый силовой канал, состоящий из разного рода преобразователей энергии, тесно сплетен с информационным каналом, в который входят всевозможные измерительные и управляющие устройства. Диапазон применений современного электропривода неоглядно широк: от аппарата для искусственного дыхания и до гигантского рольганга или шагающего экскаватора.
По прогнозам специалистов, в будущем подавляющее большинство регулируемых электроприводов будет работать на переменном токе. Лишь примерно 15 % останется на долю постоянного тока и около 10 % займут гидроприводы. Ну и 7 % устройств останется за механическими приводами.
Заключение
Конечно, по чести говоря, следовало бы продолжить описание, добавив в него рассказы об изобретении телеграфа, телефона и радио, без которых не мыслится современная жизнь. Но тогда потребовали бы рассказов телевидение и лазерная техника, полупроводниковые приборы, интегральные схемы и компьютеры, промышленная электроника, современная светотехника, электроизмерительные приборы и электротехнические материалы!… Список можно было бы, наверное, еще и продолжить. Но вспомним незабвенного Козьму Пруткова: «Нельзя объять необъятное». Так и в данном случае. Электричество прочно вошло в нашу жизнь, создало новую цивилизацию. И трудно, даже невозможно себе представить, что еще полтора века назад все было совсем иначе. Ведь начало электротехнической промышленности, примерно в 40-х годах XIX века, было весьма скромным. Пожалуй, с развитием телеграфии наметился некоторый спрос на электроприборы. Затем мощный толчок новой отрасли дало электрическое освещение. Из механической промышленности постепенно стала выделяться отрасль, которая занималась изготовлением в основном электроприборов и электромашин. В конце XIX столетия возникла электрохимия, первые успехи ощутили создатели электропривода. Была решена проблема передачи электрической энергии на большие расстояния, введен в обиход переменный ток… Электротехника шагнула от вольтова столба до центральных электростанций и от первых магнитоэлектрических машин к серьезным генераторам и турбогенераторам переменного трехфазного тока.