Литмир - Электронная Библиотека
Содержание  
A
A

Но в 70-е годы мир поразил энергетический кризис. И среди специалистов-энергетиков возникла идея, что для передачи энергии от тепловых и гидроэлектростанций на дальние, все увеличивающиеся расстояния скоро потребуются линии ультравысокого напряжения (УВН). В СССР был уже накоплен большой опыт в этом направлении. Однако при таких сверхвысоких и ультравысоких напряжениях перед инженерами и зарубежными специалистами, появились новые проблемы, связанные с электроизоляцией воздушных линий, подстанций и всего оборудования.

Может возникнуть вопрос: а что особенно трудного в повышении напряжения, скажем, на воздушной линии? Как ни странно, главная проблема – это проводимость воздуха. Ведь чтобы не происходило «пробоя» (короткого замыкания) между проводами, воздух должен обладать очень большим сопротивлением. Но его проводимость, к сожалению, после определенного предела начинает резко возрастать. И тут инженерам-электрикам приходится идти на массу ухищрений, чтобы «обмануть природу».

Некоторые специалисты стали связывать дальнейшее развитие передачи электроэнергии не с воздушными линиями, а с кабельными, подземными. Казалось бы, здесь-то проводимость должна быть еще выше, чем в воздухе. Но все дело в изоляции. Ученые предложили использовать в качестве изолятора газ, обладающий чрезвычайно низкой электропроводностью и большой электрической прочностью. Такой диэлектрик уже существует – это шестифтористая сера (SF6). Электрики называют ее элегазом.

Энергетический кризис 70-х годов подтолкнул человечество к поискам удешевления энергоресурсов. Были открыты новые месторождения нефти и газа и придуманы новые способы их транспортировки.

Мир электричества - i_200.jpg

Электрические печи завода карбида кальция у Ниагарского водопада

Построены громадные танкеры и газопроводы. Перевозка нефти и перекачивание газа по трубам оказались дешевле строительства и эксплуатации ЛЭП УВН. Интерес к дорогостоящим линиям ультравысокого напряжения тотчас же угас. Одна лишь Япония построила экспериментальную линию на 1100 кВ на опорах высотой до 120 м и длиной 250 км. На ней хотели отрабатывать ультравысоковольтное оборудование. Но пока, в начале XXI века, эта линия работает на пониженном напряжении в 550 кВ и судьба ее туманна.

В СССР в июне 1985 года было закончено строительство опытно-промышленной ЛЭП УВН на 1150 кВ, длиной 500 км, от Экибастуза до Кокчетава. Были спроектированы, построены и смонтированы подобные линии и на других направлениях. Но и они работают сегодня на пониженном напряжении. У создателей уникальных сооружений накопилось за это время великое множество интереснейших, пока не решенных вопросов.

Известно, например, что если проводник из чистого алюминия (99,99 % Al) охладить до температуры жидкого водорода (-253 °C, или 20 K), то его электрическое сопротивление уменьшится примерно в 500 раз! Это явление называется сверхпроводимостью. Температура, при которой сопротивление некоторых чистых металлов и сплавов стремится к нулю, называется критической и приближается к температуре жидкого гелия (-268,8 °C, или 0,2 K). Правда, для такого охлаждения пришлось бы затратить очень много энергии. Но сегодня известны уже сплавы, имеющие и более высокую критическую температуру. К сожалению, сверхпроводников, существующих в обычных условиях, мы пока не знаем. Однако есть немало специалистов, уверенных в том, что именно сверхпроводимость – будущее ЛЭП.

Продолжая разговор о линиях электропередачи, нельзя не упомянуть о многоступенчатых распределительных сетях, которые обеспечивают непосредственную передачу энергии от понижающих подстанций к потребителю. В них применяются разные значения напряжений. Если энергия подается по ответвлениям длиной 1 км, то напряжение может быть от 35 до 110 кВ. В пределах микрорайонов крупных промышленных городов, многих предприятий, на железнодорожных узлах обычное напряжение – 6 и 10 кВ, а в квартальных сетях, то есть в проводах и кабелях, что подводятся к распределительным щитам наших домов, к цехам заводов, напряжение не превышает 1000 В. Более дешевыми распределительными сетями являются, конечно, воздушные линии. Но в городах и на промышленных объектах приходится прокладывать кабели. Это большое и сложное хозяйство, требующее постоянного контроля и ремонта. И жители городов хорошо знакомы с ним, отмечая постоянно разрытые участки улиц и дворов, развороченные тротуары и прочие прелести кабельного строительства.

Говоря о линиях электропередачи, мы акцентировали все внимание на линиях переменного тока. Вряд ли это правильно. Сегодня и постоянный ток находит широкое применение в промышленности и на транспорте. Линии электропередачи постоянного тока имеют немало преимуществ. На их работу не влияют распределенные реактивные параметры, то есть емкость и индуктивность проводов. Это значит, что не нужно преодолевать накопления в них энергии.

Вы, наверное, знаете, что мощность в электрической цепи переменного тока бывает активной и реактивной. Активная мощность – это реальные потери на нагревание. А реактивная характеризует скорость накопления энергии в емкости и индуктивности цепи, обмен энергией между отдельными участками цепи. Без нее не обходится работа цепей переменного тока. Исследователи выяснили, что одним из эффективных средств повышения КПД линий электропередачи переменного тока могло бы стать уменьшение их реактивной мощности. Но для этого необходимо усложнение всей системы, а следовательно, и ее удорожание. У цепей постоянного тока этих проблем нет.

Другим достоинством линий электропередачи постоянного тока является то, что персонал, обслуживающий не связанные между собой линии, может не заботиться о синхронности их совместной работы. Наконец, ЛЭП постоянного тока создают значительно меньше помех родственной электро– и электронной аппаратуре. Особенно значительны преимущества передачи постоянного тока по кабелям.

В 1947 году в ряде научно-исследовательских институтов СССР начались работы по созданию преобразователей для ЛЭП постоянного тока. Три года спустя была осуществлена первая в мире кабельная электропередача постоянного тока между Каширой и Москвой. Длина опытной линии составляла 120 км, напряжение – 200 кВ и мощность – 30 МВт. Позже построили и ввели в эксплуатацию уже крупнейшую в мире линию электропередачи постоянного тока Волгоград-Донбасс с напряжением 400 кВ и длиной линии 473 км.

В 1981 году началась передача электроэнергии через вставку постоянного тока Россия – Финляндия. Такие вставки облегчают и улучшают работу основных ЛЭП переменного тока. ЛЭП на 330 кВ от подстанции Ленэнерго Восточная шла до преобразовательной подстанции в Выборге. Там энергия преобразовывалась и по вставке постоянного тока уходила в Финляндию. На подстанции Юликкяля постоянный ток снова превращался в переменный с напряжением 400 кВ и входил в систему Иматран Войма, которая являлась частью энергообъединения Скандинавских стран.

Немалую роль играют в строительстве ЛЭП и средства защиты от перенапряжений. При ударе молнии в воздушную линию, в фазовый провод или в опору в проводе возникает импульс грозового перенапряжения. Он распространяется по проводами, дойдя до подстанции, может вывести из строя ее электрооборудование. Это особенно опасно на линиях сверхвысокого напряжения. У подстанций ставят специальные разрядники, а все сооружение защищают стержневыми молниеотводами, предложенными еще Ломоносовым.

Внутренние перенапряжения возникают в основном при переключениях. Оказывает влияние на развитие перенапряжений и коронный разряд на проводах воздушных линий.

Интересно, что еще в 1910 году российский ученый-электротехник Владимир Федорович Миткевич, будущий академик Академии наук СССР, предложил расщепление проводов фаз для подавления коронного разряда. Но тогда эта проблема не была столь актуальной. Напряжения на линиях были незначительными. И лишь сорок лет спустя предложенная идея была реализована и получила признание во всем мире.

70
{"b":"112664","o":1}