У потребителей в конце линии поставили понижающие трансформаторы, которые питали изобретенные Доливо-Добровольским трехфазные двигатели, требовавшие напряжения 65 В. Таким же напряжением зажигали и лампочки накаливания.
Масляный трансформатор Лауфенской электростанции
Если учесть, что система носила все же характер экспериментальной, то можно признать ее успех полным! На Франкфуртской выставке энергия воды Некара, переданная по проводам, приводила в действие водяной насос, который поднимал воду для водопада на высоту 10 м. И снова посетители, задирая голову, терпеливо ожидали моментов пуска воды и в восторге кричали: «O! Das ist wundervoller Wasserfall! Die Neckarwasser murmeln in Frankfurt-am-Main!» («О! Это удивительный водопад! Воды Некара журчат во Франкфурте-на-Майне!»)
Удачный опыт дал мощный толчок промышленному развитию электрических сетей. Во всем мире люди стали внимательно присматриваться к запасам водной энергии. Несколько гидроэлектростанций были построены в Европе. Но самой большой в мире стала американская гидроэлектростанция, построенная на Ниагарском водопаде.
История этого строительства небезынтересна. Известно, что Ниагара находится на самой границе Соединенных Штатов и Канады. И в 1889 году, еще до пуска Лауфенской станции, в Америке возникло акционерное общество, которое приобрело права на использование от водопада 200 000 лошадиных сил мощности с американской стороны и 250 000 – с канадской. Совет директоров принял решение о постройке электрической линии передачи. По рекомендации английского электрика профессора Форбса электростанцию задумали разбить на отдельные части, каждая мощностью в 5000 лошадиных сил, и применить двухфазную систему Теслы. В целом Ниагарская электростанция была поистине грандиозным сооружением.
Двигатель трехфазного тока в 100 лошадиных сил конструкции М. О. Доливо-Добровольского, установленный во Франкфурте-на-Майне
Но строителям не повезло. В своем первоначальном виде электростанция проработала недолго. Скоро практичные американцы убедились, что трехфазный ток гораздо выгоднее всех прочих систем. И станция встала на переделку.
Глава 12. Укрощение
Превращения
Превращение всякого другого вида энергии в электромагнитную, как вы знаете, осуществляется с помощью устройства, аппарата или машины, которую называют генератором. Так, в химических элементах мы превращаем одни вещества в другие, высвобождаем энергию химических связей и преобразуем ее в энергию электрическую. Используя силу падающей воды, пара или любого иного вида первичного двигателя, мы вращаем ротор генератора в магнитном поле и превращаем механическую энергию в электрическую. Используя силу ветра и солнца, мы тоже превращаем их энергию в электрическую, потому что электрическая энергия – самый удобный и легко транспортируемый вид энергии из освоенных человечеством.
Трансформаторы Ниагарской гидроэлектростанции, повышающие напряжение до 11 кВ
Давайте еще раз пройдем по всей электроэнергетической цепи, но теперь не с исторической точки зрения, а с позиций техники. Первыми источниками электрической энергии, как вы помните, были гальванические батареи. От них зажглась и дала свет электрическая дуга, они закрутили первый электродвигатель. Но они же своей малой мощностью затормозили развитие электричества и его практическое применение.
С 1831 года – времени открытия Фарадеем явления электромагнитной индукции – начинается эпоха рождения и совершенствования электрических генераторов. Генератор – первое звено цепи. Мы уже познакомились с историей создания электрических генераторов, с непростым путем, по которому от вращающейся проволочной рамки ученые, изобретатели и конструкторские коллективы пришли к современным гигантам-генераторам.
Зал динамо-машин мощностью в 5000 лошадиных сил на Ниагарской электростанции
Специалисты делят пройденный путь на четыре этапа. Первый, охватывающий 20 лет, знаменует создание электрогенераторов с возбуждением от постоянных магнитов. Это время так называемых магнитоэлектрических машин.
Второй этап – время между 1851 и 1867 годом – объединяет тоже машины постоянного тока, но уже с независимым возбуждением, то есть не от собственных постоянных магнитов, а от электромагнитов, питающихся от постороннего независимого источника.
Третий этап характеризуется тем, что почти одновременно разные исследователи открыли принцип самовозбуждения. Вернер Сименс в 1867 году, рассказывая о сущности нового принципа, назвал его динамоэлектрическим. С этой поры генераторы с самовозбуждением, а потом и другие генераторы постоянного тока стали называть динамо-машинами, или просто динамо.
Четвертый – современный этап. Начавшись в середине 80-х годов XIX века, он продолжается по сей день. Его можно назвать эпохой переменного трехфазного тока. Именно он – трехфазный переменный ток – позволил осуществить передачу электроэнергии на далекие расстояния, создать единую энергетическую сеть и обеспечить надежную работу электропривода.
Развитие мощных трехфазных машин – турбогенераторов – началось с новым, ХХ столетием. Уже через 20 лет в США был изготовлен двухполюсный турбогенератор немыслимой, казалось бы, мощности – 62,5 МВт и частоте вращения 1200 об/мин. Но технический прогресс подгоняет сам себя и имеет тенденцию к ускорению. Одновременно с двухполюсными появились четырехполюсные турбогенераторы еще большей мощности. К 1937 году в СССР был разработан и построен самый мощный в мире турбогенератор мощностью 100 МВт и частотой вращения 3000 об/мин. Это была очень непростая работа. Энергетиков беспокоили проблемы охлаждения обмоток. Внушали опасения огромный диаметр ротора и расстояние между его опорами. Хватит ли прочности у металла? Трудности возникали и при создании громадных поковок для ротора. А какая точность обработки требовалась от электромашиностроителей… Ведь у гигантских машин есть недремлющий враг – вибрация, способная разрушить даже самую прочную конструкцию.
Великая Отечественная война задержала стремительный рост советского энергомашиностроения. Но после победы народное хозяйство потребовало еще более мощных машин. Были разработаны и построены турбогенераторы вдвое большей мощности, втрое, в пять и десять раз. Для Костромской ГРЭС был разработан проект турбогенератора мощностью 1200 МВт и частотой вращения 3000 об/мин.
Чтобы повысить мощность гигантских машин, было предложено много усовершенствований. Главным явилось увеличение плотности тока в обмотках. Вы спросите: «А как же с охлаждением? Ведь уже на довоенном гиганте их нагрев представлял собой проблему». Правильно! Дальнейший прогресс потребовал глубоких теоретических и экспериментальных исследований, создания опытных машин и уникальных испытательных стендов. Конструкторы ленинградского завода «Электросила» впервые в мировой практике разработали и внедрили водородное охлаждение роторов. Статор же охлаждался водой, которая текла по полым медным проводникам обмотки. Для крепления были применены новые материалы, позволившие насколько возможно убрать вибрацию и не допустить резонанса.
Аналогичный путь исследований и устранения трудностей проходили и зарубежные турбостроительные фирмы. В США и Японии ныне строятся турбогенераторы в основном с водородно-водяным охлаждением мощностью до 1100 МВт. Фирма «Сименс», создающая турбогенераторы для атомных электростанций, освоила выпуск агрегатов мощностью 1500 МВт, частотой вращения 1800 об/мин и частоте тока 60 Гц. Фирма использует только водяное охлаждение как для обмоток статора, так и для ротора. А фирма «Альстом-атлантик» построила для атомных электростанций серию четырехполюсных турбогенераторов мощностью 1600 МВт.