В ту пору Каразин жил у себя в поместье Кручик в Харьковской губернии. Со свойственной ему страстностью и энергией предавался он научным занятиям и опытам. У него в имении были прекрасная библиотека, химическая лаборатория и метеорологическая станция, на которой он в течение десятков лет вел наблюдения. Тут же рядом располагалось опытное поле, с делянками, засеянными различными сортами пшеницы. Вообще, надо сказать, это был удивительный, интереснейший человек, каких немало в русской истории. Жизнь его – настоящий роман…
Понимая, как нужны удобрения для повышения урожайности почв, Каразин задумался над способом извлечения азотистых соединений из воздуха электрическим путем. Он хорошо представлял себе ничтожность силы существующих источников – вольтовых столбов. И посему решил поставить на службу человеку молнию.
Составив свой проект, Каразин подал его на высочайшее рассмотрение. Бумаги попали на отзыв в Академию наук. Там должным порядком они прошли рецензирование. Проект Каразина рассматривали в Академии, но никто не нашел в поданных предложениях ничего достойного внимания. И лишь Петров написал положительный отзыв.
К сожалению, ни наука, ни тем более техника не готовы были к принятию подобных идей.
Рождение электротехники
Рождение электротехники началось с изготовления первых гальванических элементов – химических источников электрического тока Алессандро Вольтой.
Рассказывают, что при раскопках египетских древностей археологи обратили внимание на странные сосуды из обожженной глины с изъеденными металлическими пластинами в них. Что это?.. «А уж не банки ли это химических элементов?» – пришла кому-то в голову «сумасшедшая» мысль. Но так ли она безумна? Ведь получение постоянного электрического тока химическим путем действительно очень просто. Соленой воды на Земле хоть отбавляй, как и необходимых металлов – цинка и меди. Вместо меди можно было применять серебро и золото… Но оставим эти догадки фантастам.
Первые элементы имели один общий недостаток. Они давали ток лишь несколько минут, затем «требовали отдыха». Почему это происходило, никто сначала не понимал. Но с такими «быстроутомляющимися» источниками нечего было и думать затевать какую-то промышленность. И потому усилия исследователей сконцентрировались на проблеме продления работоспособности химических элементов. Их было много – изобретателей новых источников электрического тока. И каждый, патентуя свое детище, давал ему собственное имя.
Оказалось, что цинк, соединяясь с кислотой, вытесняет из нее водород. Пузырьки газа оседают на металлических пластинках и затрудняют прохождение тока. Физики назвали это явление поляризацией элементов и объявили ему войну.
Примерно в начале 30-х годов XIX столетия англичане Кемп и Уильям Стёрджен (изобретатель электромагнита, о котором речь еще впереди) выяснили, что цинковая пластинка, покрытая амальгамой – раствором цинка в ртути, – действует не хуже чистого цинка, но при этом не растворяется в кислоте, когда элемент не работает, то есть когда он не дает тока. Это стало существенным достижением. Следом за ними французский физик, основатель ученой династии Антуан Сезар Беккерель высказал мысль, что хорошо бы попробовать опускать пластинки в разные сосуды так, чтобы выделяющийся водород тут же химически соединялся с кислородом, образуя воду. Идея понравилась. Но как ее реализовать? Изобретатели всех стран принялись за опыты. И надо прямо сказать, что если в XVIII веке едва ли не каждый образованный человек строил электрические машины, чтобы добывать таинственную силу электричества трением, то теперь всякий исследователь считал своим долгом подарить миру и человечеству новый химический элемент.
На первом этапе наибольший успех выпал на долю профессора химии Лондонского королевского колледжа Даниэля. В стеклянную банку с медным купоросом он поместил согнутый в цилиндр металлический лист. Внутрь вставил глиняный сосуд с пористыми стенками, заполненный разбавленной серной кислотой. В кислоту был помещен цинк. Водород проходил через поры глиняного сосуда, вытеснял медь из купороса. Несколько синих кристалликов, брошенных на дно банки, пополняли убыль меди.
Поляризация была побеждена! Однако у элемента Даниэля нашлись другие недостатки. Так, он имел пониженную электродвижущую силу. Часть электрической энергии тратилась внутри самого элемента на разложение медного купороса.
Гальванические элементы Лекланше и Даниэля
Соотечественник Даниэля Уильям Грове решил заменить медный купорос азотной кислотой. А чтобы она не разъедала медный электрод, заменил медь платиной. Все получилось в соответствии с ожиданиями: электродвижущая сила возросла. К сожалению, возросла и стоимость такого источника тока: платина – металл дорогой. Правда, Грове и его последователи делали электроды из тончайших листков, согнутых для прочности буквой S. Несмотря на высокую стоимость, элементы Грове нашли довольно широкое распространение в лабораториях многих стран.
Сегодня может показаться странным, что никто не додумался заменить платину углем. Принципиальная возможность такой замены была уже известна. Но тут мы не учитываем уровня технологии начала XIX столетия. Тогда никто не умел делать плотных углей. А обычный древесный уголь слишком пористый. Прошло несколько лет, прежде чем немецкий химик Роберт Бунзен описал способ изготовления угольных стержней из прессованного молотого графита, который выделялся при сгорании светильного газа на раскаленных стенках реторт. Стержни стали прекрасным заменителем платины.
Элемент Бунзена приняли «на ура» не только лаборатории физики, но и первые электротехнические предприятия (в частности, по гальванопластике). И это несмотря на то, что при работе элемент Бунзена выделял немало удушливых паров азотной кислоты. Иоганн Поггендорф заменил азотную кислоту хромовой, не выделявшей вредных испарений. Но ее производство было довольно дорогим делом.
Гальванические элементы Грове, Калло и Бунзена
Изобретатели старались вовсю. На страницах научных журналов одно за другим появлялись описания все новых и новых элементов. Ими занимались специалисты, ими занимались любители, ими занимались… В качестве курьеза можно упомянуть, что последний французский император Наполеон III, прежде чем навсегда подарить свою корону Республике, тоже «осчастливил» мир конструкциями двух источников электрического тока.
Впрочем, во второй половине XIX столетия химические источники тока стали изготавливать в специальных мастерских. Главный их потребитель – телеграф – требовал простоты устройства, дешевизны, устойчивости и надежности в работе. За все это телеграфисты соглашались на самые «слабые» токи.
Можно рассказать еще о многих более или менее удачных попытках изобретательства. Наибольший успех выпал на долю парижского химика Жоржа Лекланше. Он наполнил глиняную банку смесью перекиси марганца с кусочками угля из газовых реторт и поместил туда же прямоугольную угольную призму, которая должна была служить положительным электродом. Эта система заливалась сверху варом или смолой и вставлялась в стеклянную четырехугольную банку, заполненную раствором нашатыря, с цинковым электродом. При этом хлор из нашатыря (хлористого аммония), соединяясь с цинком, давал хлористый цинк. Аммоний распадался на растворяющийся аммиак и водород. Вот тут-то и была ахиллесова пята этого превосходного элемента. Перекись марганца окисляла водород медленно и небольшими порциями. А выделение этого газа зависело от силы тока, который отбирается от элемента. Больше ток – больше выделяется и водорода. Водород же поляризует элемент, и последний быстро «устает». Правда, после некоторого «отдыха» он исправно работает снова. Однако лучше всего им было пользоваться при «малых токах» в телеграфии или в системе сигнализации, где между моментами работы существуют значительные перерывы.