Развитие науки и техники привело к тому, что астрономические требования к точности часов перестали быть уникальными. В то же время организация передач сигналов точного времени по радио и по телевизионным каналам позволила регулярно контролировать ход опорных часов астрономических обсерваторий по показаниям лучших часов единой государственной службы времени и т. о. значительно повысить надёжность их работы.
Е. А. Юров.
Часы (прибор)
Часы' , прибор для измерения текущего времени (в секундах, минутах, часах). Ч. относятся к категории «приборов времени», куда входят также хронометр , секундомер ,таймер , реле времени и комбинированные приборы, например Ч. с секундомером. Для измерения времени можно использовать равномерное поступательное или вращательное движение и периодические колебания; мерилом времени в этих случаях будет соответственно пройденный путь (или перемещение), угол поворота или число колебаний.
Первым устройством, с помощью которого человек измерял время, были солнечные Ч. Уже в середине 3-го тысячелетия до н. э. в качестве простейших Ч. использовался гномон . В Древнем Египте и Греции время отсчитывали по солнечным Ч. с горизонтальными или вертикальными циферблатами (рис. 1 ). В Самарканде в 1-й половине 15 в. Улугбек построил солнечные Ч. высотой около 50 м. В средние века в Европе значительное распространение получили Ч. с вертикальным циферблатом. Такие Ч., например, сохранились в Москве на здании Историко-архивного института и старом здании МГУ. Наряду с солнечными Ч. уже во 2-м и 1-м тыс. до н. э. в Индии, Египте, Китае и Греции строились водяные Ч., которые показывали время и днём, и ночью. Простейшие водяные Ч. представляли собой сосуд со шкалой, проградуированной в единицах времени. В сосуд капля за каплей поступала вода из наполненного до краев (из внешнего источника) резервуара. Постоянство давления воды в резервуаре обеспечивало равномерное наполнение сосуда и равномерное повышение уровня воды в нём, отмечаемое по шкале. Около 150 до н. э. Ктесибий создал водяные Ч. (рис. 2 ), ставшие прототипом Ч., которые применялись во многих странах вплоть до 18 в. Равномерное движение положено в основу функционирования и некоторых других типов Ч., в том числе песочных.
Первое упоминание о механических Ч. содержится в византийской антологии (конец 6 в.). Одни историки приписывают изобретение механических Ч. Пацификусу из Вероны (начало 9 в.), другие — монаху Герберту (впоследствии папа Сильвестр II), якобы в 996 сделавшему гиревые башенные Ч. для г. Магдебурга, которые не были механическими Ч. в современном понимании. Скорее всего это были водяные Ч. с использованием механизмов для приведения в действие дополнительных устройств, например механизма боя Ч., но не отсчёта времени. Достоверно известно, что простые по конструкции механические башенные Ч. были построены в Милане в 1335; в 1348—64 Донди в Италии создал Ч., которые наряду с отсчётом времени воспроизводили движение Солнца, Луны и пяти планет; в 1354 были установлены Ч. Страсбургского собора с курантами, календарём и движущимися фигурами. В России первые башенные Ч. были сделаны в 1404 в Московском Кремле монахом Лазарем Сербиным; они имели гиревые двигатели, механизм боя, планетарный механизм. В 15—17 вв. башенные Ч. начали устанавливать во многих городах России.
В 14 в. появились первые механические Ч. со шпиндельным спуском (рис. 3 ). По сравнению с водяными Ч. шпиндельные Ч. были более совершенными, но всё же точность их хода не превышала 0,5 ч в сутки; до 16 в. они имели одну лишь часовую стрелку. Около 1510 нюрнбергский механик П. Хенлейн впервые применил вместо гирь стальную пружину и создал карманные Ч. со шпиндельным механизмом. Из-за несовершенства пружин и самого шпиндельного механизма, не имеющего собственного периода колебаний, показания этих Ч. сильно зависели от степени заводки пружины. В 1525 Я. Цех из Праги предложил фузею, или улитку, — приспособление для выравнивания усилия пружины во времени, что позволило повысить точность пружинных Ч. Шпиндельные Ч., хотя и имели невысокую точность, отличались высокой надёжностью и просуществовали до конца 19 в.
Огромное значение для повышения точности Ч. имело открытие Г. Галилеем изохронности малых колебаний маятника , т. е. независимости периода его колебаний от амплитуды. Галилей около 1640 предложил новый спусковой механизм, напоминающий современный хронометровый, но его идея не получила практического воплощения. Изобретателем современных механических Ч. по праву считается Х. Гюйгенс , который в 1657 применил маятник в качестве регулятора Ч. Маятниковые Ч. даже с несовершенным шпиндельным механизмом позволили снизить погрешность за сутки до 5—10 сек. В 1675 английский часовщик У. Клемент предложил заменить шпиндельный механизм на крючковый, представляющий собой простейшую разновидность анкерного спускового механизма (см. Анкер ). Такой механизм сохранился до наших дней в простейших маятниковых Ч. типа ходиков (рис. 4 ). Новый шаг в совершенствовании Ч. связан с именем англичанина Дж. Грагама, который изобрёл несвободный анкерный механизм, имеющий значительно меньшие потери энергии, чем крючковый механизм Клемента. В 1675 Гюйгенс предложил в качестве регулятора колебаний использовать систему «баланс—спираль». Баланс — это колесо с массивным металлическим (обычно латунным) ободом, укрепленное на стальной оси; спираль — тонкая пружина, один конец которой крепится к оси баланса, а другой — к неподвижной опоре. Выведенная из состояния покоя система «баланс — спираль» совершает колебания вокруг своей оси; момент инерции баланса и жёсткость спирали определяют период колебаний системы. Такая колебательная система обладает собственным периодом колебаний; она достаточно надёжна при переноске и транспортировке Ч. В связи с применением балансового регулятора в Ч. с пружинным двигателем потребовалось дальнейшее совершенствование спусковых механизмов. До конца 19 в. в карманных Ч. широко применялся изобретённый Грагамом в начале 18 в. цилиндровый механизм. Со 2-й половины 19 в. получил распространение свободный анкерный механизм, до сего времени применяющийся во всех переносных, в том числе наручных и карманных, Ч. В связи с повышением точности часовых механизмов в конце 17 в. в карманных Ч. устанавливают минутные стрелки, а примерно с 1760 в Ч. стали применять секундные стрелки.
Значительное влияние на точность хода маятниковых, особенно балансовых, Ч. оказывает изменение температуры окружающей среды. Погрешность хода маятниковых Ч. за сутки при изменении температуры на 1°С за счёт изменения длины маятника при стальном стержне составляет 0,5, а при деревянном — 0,2 сек; для балансовых Ч. со стальной спиралью около 11 сек , в основном за счёт изменения её жёсткости. В середине 18 в. было создано несколько типов маятников, температурная погрешность которых устранялась методом компенсации. Температурная компенсация балансового регулятора, основанная на применении биметалла, была предложена в 1761 французским часовым мастером П. Леруа. Такие балансы с компенсационными грузами по ободу применяются в современных морских хронометрах. Русский механик И. П. Кулибин в конце 18 в. предложил оригинальную конструкцию биметаллического баланса. В конце 19 — начале 20 вв. швейцарский физик Ш. Э. Гильом создал материалы с близким к нулю коэффициентом линейного расширения (для маятников) — инвар , и с минимальным значением термоэластического коэффициента (для часовых спиралей) — элинвар . Использование этих материалов в Ч. в сочетании с компенсационными устройствами практически устранило температурные воздействия на ход механических Ч. Так, например, Ч. с маятником из инвара даже без компенсационного устройства имеют температурную погрешность хода за сутки менее 0,05 сек на 1°С, а наручные Ч. со спиралью из элинвара — менее 0,5 сек , что вполне удовлетворяет требованиям, предъявляемым к Ч. широкого потребления.