Литмир - Электронная Библиотека
Содержание  
A
A

  С. А. Погодин, Г. В. Инденбаум.

Сплавы (прецизионные)

Спла'вы с особыми физическими свойствами, металлические сплавы с заданными значениями некоторых физико-механических свойств (магнитных, электрических, тепловых, упругих); то же, что прецизионные сплавы.

Спланхнология

Спланхноло'гия (от греч. splánchna — внутренности и ...логия), раздел анатомии; учение о внутренних органах (см. Внутренности).

Спланхноплевра

Спланхнопле'вра (от греч. splánchna — внутренности и плевра), часть эпителиальной стенки вторичной полости тела (целома) у беспозвоночных, прилегающая к кишечнику и др. внутренним органам, в отличие от соматоплевры, прилегающей изнутри к стенке тела. У зародышей хордовых животных и человека С. представлена внутренним (висцеральным) листком спланхнотома, или боковой пластинки. Из С. развиваются серозные оболочки внутренних органов, спинная и брюшная брыжейки, соединительнотканный и мускульный слои кишечника, мышечная стенка сердца, мышцы жаберного аппарата, кровь и кровеносные сосуды; у высших позвоночных и человека С., кроме того, участвует в образовании зародышевой оболочки — аллантоиса.

Спланхноптоз

Спланхнопто'з (от греч. splánchna — внутренности и ptosis — падение), то же, что опущение внутренностей.

Спланхнотомы

Спланхното'мы (от греч. splánchna — внутренности и tome — отрезок), парные части мезодермы у зародыша ланцетника, позвоночных животных и человека, удалённые от осевых органов (хорды и нервной трубки) и не подвергающиеся сегментации. С. состоят из 2 листков — париетального и висцерального, между которыми находится полость в виде щели, преобразующаяся впоследствии во вторичную полость тела. То же, что боковые пластинки.

Спленомегалия

Спленомега'лия (от греч. splen — селезёнка и mégas, родительный падеж megálos — большой) (медицинская), увеличение селезёнки. Отмечается главным образом при её заболеваниях (опухоли, кисты, абсцессы), общих инфекциях (сепсис, малярия, брюшной и сыпной тифы и др.), болезнях крови (например, лейкозы, лимфогранулематоз) и печени. Исследование селезёнки методом пальпации производят в положении больного на боку; при нормальных размерах прощупать её не удаётся. Нередко С. — первое проявление заболевания крови; для уточнения диагноза в таких случаях применяется диагностическая пункция органа. При хронических лейкозах селезёнка может занимать большую часть живота (масса до 8 кг), при этом резко нарушаются функции соседних органов (желудка, кишечника, левой почки), затрудняются дыхание и кровообращение. При С. возможны расстройства кровообращения в селезёнке (например, тромбозы), угнетение кроветворения (гиперспленизм) и др. осложнения. Лечение — операция удаления селезёнки (спленэктомия), облучение её гамма-лучами, цитостатические средства, кортикостероиды.

Спленопатия

Спленопа'тия (от греч. splen — селезёнка и páthos — страдание, болезнь), заболевание селезёнки; см. также Спленомегалия.

Сплит

Сплит (Split), город и порт в Югославии, в Социалистической Республике Хорватии, на побережье Адриатического моря. 158 тыс. жителей (1974). По грузообороту второй порт (после Риеки) в стране (1,8 млн. т в 1972) и первый по пассажирообороту (свыше 1,4 млн. чел. в год). Вместе с ближайшими населёнными пунктами образует крупный промышленный узел Югославии. Судостроение, цементная (около 1/2 продукции страны), химическая и пищевая промышленность; текстильные предприятия; ГЭС. В С. — биолого-океанографический научно-исследовательский институт. Морской, археологический, этнографический и др. музеи. Галерея искусств (преимущественно югосл. искусство), Галерея И. Мештровича. Центр туризма и приморский курорт. Памятник архитектуры — древнеримский дворец Диоклетиана (около 300, см. илл.), в основу композиции которого были положены принципы планировки военного лагеря; во внутренней части комплекса располагались административные и хозяйственные постройки, мавзолей Диоклетиана и храм Юпитера (в средние века превращенные соответственно в собор и баптистерий). Средневековая часть С. (внутри и к З. от дворца) сохранила многочисленные образцы готического, ренессансного и барочного зодчества.

  Лит.: Kečkemet D., Bibliografija o Splitu, dio 1—2, Split. 1955—56.

Большая Советская Энциклопедия (СП) - i009-001-200876848.jpg

Сплит. Мавзолей Диоклетиана (около 300; с 7 в. — собор; колокольня 13—16 вв.).

Большая Советская Энциклопедия (СП) - i009-001-202754089.jpg

Сплит. Дворец Диоклетиана. Около 300.

Большая Советская Энциклопедия (СП) - i009-001-203800736.jpg

Дворец Диоклетиана в Сплите (Хорватия). Около 300. Реконструкция.

Большая Советская Энциклопедия (СП) - i009-001-207819477.jpg

Сплит. Набережная.

Сплошная нагрузка

Сплошна'я нагру'зка в строительной механике, нагрузка, распределённая непрерывно по данной площади или по данной линии. С. н. может быть равномерно распределённой (постоянной интенсивности) или изменяться по другому закону, например линейному, квадратичному и т. д.

Сплошной спектр

Сплошно'й спе'ктр, непрерывный спектр, спектр электромагнитного излучения, распределение энергии в котором характеризуется непрерывной функцией частоты излучения [j(n)] или длины его волны [f(l), см. Спектры оптические]. Для С. с. функция (j(n) [или f(l)] слабо изменяется в достаточно широком диапазоне n (или l), в отличие от линейчатых и полосатых спектров, когда j(n) имеет при дискретных значениях частоты n = n1, n2, n3,... выраженные максимумы, очень узкие для спектральных линий и более широкие для спектральных полос. В оптической области при разложении света спектральными приборами С. с. получается в виде непрерывной полосы (при визуальном наблюдении или фоторегистрации; см. рис.) или плавной кривой (при фотоэлектрической регистрации). С. с. наблюдаются как в испускании, так и в поглощении. Примером С. с., охватывающего весь диапазон частот и характеризуемого вполне определённым спектральным распределением энергии, является спектр равновесного излучения. Он характеризуется Планка законом излучения.

  В некоторых случаях возможны наложения линейчатого спектра на сплошной.

  Например, в спектрах Солнца и звёзд на С. с. испускания могут накладываться как дискретный спектр поглощения (фраунгоферовы линии), так и дискретный спектр испускания (в частности, спектральные линии испускания атома водорода).

  Согласно квантовой теории, С. с. возникает при квантовых переходах между двумя совокупностями уровней энергии, из которых по крайней мере одна принадлежит к непрерывной последовательности уровней (к непрерывном у энергетическому спектру). Примером может служить С. с. атома водорода, получающийся при переходах между дискретными уровнями энергии с различными значениями квантового числа n и непрерывной совокупностью уровней энергии, лежащих выше границы ионизации (свободносвязанные переходы, см. рис. 1, б в ст. Атом); в поглощении С. с. соответствует ионизации атома Н (переходы электрона из связанного состояния в свободное), в испускании — рекомбинации электрона и протона (переходы электрона из свободного состояния в связанное). При переходах между разными парами уровней энергии, принадлежащими к непрерывной совокупности уровней (свободно-свободные переходы), также возникают С. с., соответствующие тормозному излучению при испускании и обратному процессу при поглощении. Переходы же между разными парами дискретных уровней энергии создают линейчатый спектр (связанно-связанные переходы).

56
{"b":"106262","o":1}