Литмир - Электронная Библиотека
Содержание  
A
A

  Наиболее разработан С. а. самосопряжённых линейных операторов в гильбертовом пространстве (обобщающих симметрические матрицы) и унитарных линейных операторов в том же пространстве (обобщающих унитарные матрицы). Самосопряжённый оператор А в гильбертовом пространстве всегда имеет чисто действительный спектр (дискретный, непрерывный или смешанный) и допускает спектральное разложение вида

Большая Советская Энциклопедия (СП) - i-images-113273715.png
 (*)

  где E(l) т. н. разложение единицы (отвечающее оператору А), т. е. семейство проекционных операторов, удовлетворяющее специальным условиям. Точками спектра в данном случае являются точки роста операторной функции Е(l); в случае чисто дискретного спектра все они являются скачками Е(l), так что здесь

Большая Советская Энциклопедия (СП) - i-images-174390231.png

  и спектральное разложение (*) сводится к разложению

Большая Советская Энциклопедия (СП) - i-images-138429912.png

  Унитарный оператор в гильбертовом пространстве имеет спектр, расположенный на окружности |l| = 1, и допускает спектральное разложение родственного (*) вида, но с заменой интегрирования от -¥ до ¥ интегрированием по этой окружности. Изучен также специальный класс нормальных операторов в гильбертовом пространстве, представимых в аналогичном представлению (*) виде, но где уже интегрирование в правой части распространено на более общее множество точек l комплексной плоскости, представляющее собой спектр А. Что касается С. а. несамосопряжённых и не являющихся нормальными линейных операторов, обобщающих произвольные несимметрические матрицы, то ему были посвящены многочисленные работы Дж. Биркгофа (США), Т. Карлемана (Швеция), М. В. Келдыша, М. Г. Крейна (СССР), Б. Сёкефальви-Надя (Венгрия), Н. Данфорда (США) и многих др. учёных, но тем не менее соответствующая теория ещё далека от полной завершённости.

  С. а. линейных операторов имеет целый ряд важных применений в классической механике (особенно теории колебаний), электродинамике, квантовой механике, теории случайных процессов, дифференциальных и интегральных уравнений и др. областях математики и математической физики.

  Лит.: Курант P., Гильберт Д., Методы математической физики, пер. с нем., 3 изд., т. 1, М. — Л., 1951; Ахиезер Н. И., Глазман И.М., Теория линейных операторов в гильбертовом пространстве, 2 изд., М., 1966; Плеснер А. И., Спектральная теория линейных операторов, М., 1965; Рисе Ф., Секефальви Надь Б., Лекции по функциональному анализу, пер. с франц., М., 1954; Секефальви-Надь Б., Фояш Ч., Гармонический анализ операторов в гильбертовом пространстве, пер. с франц., М., 1970; Данфорд Н., Шварц Дж. Т., Линейные операторы, пер. с англ., ч. 2—3, М., 1966—74; Келдыш М. В., Лидский В. Б., Вопросы спектральной теории несамосопряженных операторов, в кн.: Тр. 4-го Всесоюзного математического съезда, т. 1, Л., 1963, с. 101—20.

Спектральный анализ звуков речи

Спектра'льный ана'лиз зву'ков ре'чи, метод установления акустической структуры звуков речи, представляющих собой сложный, непрерывно изменяющийся во времени акустический сигнал, образующийся рядом частотных составляющих с различной интенсивностью (см. Спектр звука). При С. а. з. р. используются автоматически действующие электроакустические приборы — спектрометры или спектрографы. Звук, введённый в прибор, например через микрофон, проходя через электроакустические фильтры (каналы), каждый из которых имеет определённую полосу пропускания, разлагается на соответствующие частотные составляющие, которые можно наблюдать на экране или фотографировать. Динамические спектрографы позволяют анализировать текущую речь; полученные спектрограммы отражают непрерывность перехода от одного звука к другому.

Спектральный анализ (математич.)

Спектра'льный ана'лиз функции, обобщение гармонического анализа, тоже самое, что и спектральное разложение функции.

Спектральный анализ рентгеновский

Спектра'льный анализ рентге'новский, элементный анализ вещественного состава материалов по их рентгеновским спектрам. Качеств. С. а. р. выполняют по спектральному положению характеристических линий в спектре испускания исследуемого образца, его основой является Мозли закон; количественный С. а. р. осуществляют по интенсивностям этих линий. Методами С. а. р. могут быть определены все элементы с атомным номером Z ³ 12 (в некоторых случаях — и более лёгкие). Порог чувствительности С. а. р. в большинстве случаев ~ 10-2—10-4 %, продолжительность его (вместе с подготовкой пробы) несколько мин. С. а. р. не разрушает пробу.

  Наиболее распространённый вид С. а. р. — анализ валового состава материалов по их флуоресцентному рентгеновскому излучению. Выполняется он по относительной интенсивности линий, которая измеряется с высокой точностью спектральной аппаратурой рентгеновской. Относительная точность количественного С. а. р. колеблется от 0,3 до 10% в зависимости от состава пробы; на интенсивность аналитической линии каждого элемента влияют все остальные элементы пробы. Поэтому одной и той же измеренной интенсивности I1 аналитической линии i могут соответствовать различные концентрации C1, C2, С3, ... определяемого элемента (см. рис.) в зависимости от наполнителя — состава пробы за исключением определяемого элемента. Вследствие этого т. н. вырождения интенсивности по концентрации С. а. р. возможен лишь на основе общей теории зависимости li от концентраций всех n компонентов пробы — системы n уравнений связи.

  На основе общей теории анализа разработано несколько частных методов. При отсутствии в пробе мешающих элементов можно применять простейший из них — метод внешнего стандарта: измерив интенсивность аналитической линии пробы, по аналитическому графику образца известного состава (стандарта) находят концентрацию исследуемого элемента. Для многокомпонентных проб иногда применяют метод внутреннего стандарта, в котором ординатой аналитического графика служит отношение интенсивностей линий определяемого элемента и внутреннего стандарта — добавленного в пробу в известном количестве элемента, соседнего (в периодической системе элементов) с определяемым. Во многих случаях успешно применяют метод добавок в пробу в известном количестве определяемого элемента или наполнителя. По изменению интенсивности аналитической линии можно найти первоначальную концентрацию определяемого элемента.

  В промышленности применяют метод стандарта-фона, в котором ординатой аналитического графика является отношение интенсивности аналитической линии флуоресцентного излучения образца и близкой к ней линии первичного рентгеновского излучения, рассеянного пробой. Это отношение во многих случаях мало зависит от состава наполнителя. Для анализа сложных многокомпонентных проб полную систему уравнений связи расшифровывают на ЭВМ по методу последовательных (обычно трёх-четырёх) приближений.

  С. а. р. валового состава нашёл применение на обогатительных фабриках цветной металлургии — для контрольных целей и для экспрессного анализа; на металлургических заводах — для определения потерь металла в шлаках, маркировки сплавов сложного состава, контроля состава латуней в процессе плавки и т. д.; на цементных заводах — для контроля состава цементно-сырьевых смесей. Валовый С. а. р. применяется также для силикатного анализа.

  Рентгеновский микроанализ (локальный анализ) участков пробы ~ 1—3 мкм2 (т. е. меньше размеров зерна сплава) выполняют с помощью электронно-зондового микроанализатора по рентгеновскому спектру исследуемого участка. Он требует точного введения поправок на атомный номер определяемого элемента, поглощение его излучения в пробе и его флуоресценцию, возбуждаемую тормозной компонентой излучения и характеристическим излучением др. элементов пробы.

19
{"b":"106262","o":1}