Литмир - Электронная Библиотека
Содержание  
A
A

Пуассон Симеон Дени

Пуассо'н (Poisson) Симеон Дени (21.6.1781, Питивье, департамент Луара, — 25.4.1840, Париж), французский учёный, член Парижской АН (1812), почётный член Петербургской АН (1826). По окончании в 1800 Политехнической школы в Париже работал там же (с 1806 профессор). С 1809 профессор Парижского университета. Труды П. относятся к теоретической и небесной механике, математике и математической физике. Он впервые записал уравнения аналитической механики в составляющих импульса. В гидромеханике П. обобщил Навье — Стокса уравнение на случай движения сжимаемой вязкой жидкости с учётом теплопередачи. Решил ряд задач теории упругости, ввёл Пуассона коэффициент и обобщил уравнения теории упругости на анизотропные тела. В области небесной механики исследовал устойчивость движения планет Солнечной системы, занимался решением задач о возмущениях планетных орбит и о движении Земли вокруг её центра тяжести. В теории потенциала ввёл Пуассона уравнение и применил его к решению задач по гравитации и электростатике. П. принадлежат работы по интегральному исчислению (см. Пуассона интеграл), исчислению конечных разностей (см. Пуассона формула суммирования), теории дифференциальных уравнений с частными производными, теории вероятностей, где он доказал частный случай больших чисел закона и одну из предельных теорем (см. Пуассона теорема,Пуассона распределение). Исследовал вопросы теплопроводности, магнетизма, капиллярности, распространения звуковых волн и баллистики. Был убеждённым сторонником атомизма П. С. Лапласа.

  Соч.:  Traité de mécanique, 2 éd., v. 1—2, P., 1833; Théorie nouvelle de l'action capillaire, P., 1831; Théorie mathématique de la chaleur..., P., 1835; Recherches sur la probabilité..., P., 1837.

  Лит.: Араго Ф., Биографии знаменитых астрономов, физиков и геометров, пер. с франц., т. 3, СПБ, 1861; Клейн Ф., Лекции о развитии математики в XIX столетии, пер. с нем., ч. 1, М. — Л., 1937.

  И. Д. Рожанский.

Пуассона интеграл

Пуассо'на интегра'л, 1) интеграл вида

Большая Советская Энциклопедия (ПУ) - i-images-103870093.png
,

где r и j — полярные координаты, q — параметр, меняющийся на отрезке [0; 2p]; П. и. выражает значения функции u (r, j), гармонической внутри круга радиуса R, через её значения f (q), заданные на границе этого круга. Функция u (r, j) является решением задачи Дирихле для круга (см. Гармонические функции). П. и. был впервые рассмотрен С. Д. Пуассоном (1823). Строгая теория П. и. была создана Г. Шварцем (1869).

  2) Интеграл

Большая Советская Энциклопедия (ПУ) - i-images-140811535.png
;

встречается в теории вероятностей и некоторых задачах математической физики. С. Д. Пуассон предложил весьма простой приём для вычисления этого интеграла. Впервые же этот интеграл был вычислен (1729) Л. Эйлером, поэтому называется также интегралом Эйлера — Пуассона.

Пуассона коэффициент

Пуассо'на коэффицие'нт, одна из физических характеристик материала упругого тела, равная отношению абсолютных значений относительной поперечной деформации элемента тела к его относительной продольной деформации. Введён С. Д. Пуассоном. При растяжении прямоугольного параллелепипеда в направлении оси х (рис.) имеют место вдоль этой оси удлинение

Большая Советская Энциклопедия (ПУ) - i-images-129110466.png
, а вдоль перпендикулярных осей у и z — сжатие
Большая Советская Энциклопедия (ПУ) - i-images-164677048.png
,
Большая Советская Энциклопедия (ПУ) - i-images-164885318.png
, т. е. сужение его поперечного сечения. П. к. равен n = ½ey½/eх или nzx= ½ez½/eх. Для изотропного тела величина П. к. не меняется ни при замене растяжения сжатием, ни при перемене осей деформации, т. е. nxy = nyx = nzx = n. В анизотропных телах П. к. зависит от направления осей (т. е. nxy ¹ nyx ¹ nzx). П. к. вместе с одним из модулей упругости определяет все упругие свойства изотропного тела. Величина П. к. для большинства металлических материалов близка к 0,3.

Большая Советская Энциклопедия (ПУ) - i008-pictures-001-294510897.jpg

Рис. к ст. Пуассона коэффициент.

Пуассона распределение

Пуассо'на распределе'ние, одно из важнейших распределений вероятностей случайных величин, принимающих целочисленные значения. Подчинённая П. р. случайная величина Х принимает лишь неотрицательные значения, причём Х = kc вероятностью

Большая Советская Энциклопедия (ПУ) - i-images-182303311.png
, k = 0, 1, 2,...

(l — положительный параметр). Своё название «П. р.» получило по имени С. Д. Пуассона (1837). Математическое ожидание и дисперсия случайной величины, имеющей П. р. с параметром l, равны l. Если независимые случайные величины X1 и X2 имеют П. р. с параметрами l1 и l2, то их сумма X1+ X2 имеет П. р. с параметрами l1 + l2.

  В теоретико-вероятностных моделях П. р. используется как аппроксимирующее и как точное распределение. Например, если при n независимых испытаниях события A1,..., An осуществляются с одной и той же малой вероятностью р, то вероятность одновременного осуществления каких-либо k событий (из общего числа n) приближённо выражается функцией pk (np) (математическое содержание этого утверждения при больших значениях n и 1/р формулируются Пуассона теоремой). В частности, такая модель хорошо описывает процесс радиоактивного распада и многие др. физические явления.

  Как точное П. р. появляется в теории случайных процессов. Например, при расчёте нагрузки линий связи обычно предполагают, что количества вызовов, поступивших за непересекающиеся интервалы времени, суть независимые случайные величины, подчиняющиеся П. р. с параметрами, значения которых пропорциональны длинам соответствующих интервалов времени (см. Пуассоновский процесс).

  В качестве оценки неизвестного параметра l по n наблюдённым значениям независимых случайных величин X1,..., Xn используется их арифметическое среднее X = (X1 +... + Xn)/n, поскольку эта оценка лишена систсматической ошибки и её квадратичное отклонение минимально (см. Статистические оценки).

  Лит.: Гнеденко Б. В., Курс теории вероятностей, 5 изд., М. — Л., 1969; Феллер В., Введение в теорию вероятностей и ее приложения, пер. с англ., 2 изд., т. 1, М., 1967.

Большая Советская Энциклопедия (ПУ) - i010-001-250507749.jpg

Рис. к ст. Пуассона распределение.

Пуассона теорема

Пуассо'на теоре'ма, 1) теорема теории вероятностей, описывающая поведение частоты появления некоторого события в последовательности независимых испытаний — частный случай закона больших чисел (точную формулировку см. в ст. Больших чисел закон). 2) Одна из предельных теорем теории вероятностей. П. т. позволяет приближённо оценивать вероятность данного числа появлений маловероятного события при большом числе независимых испытаний (см. Пуассона распределение).

3
{"b":"106225","o":1}