Литмир - Электронная Библиотека
Содержание  
A
A

Квазистационарный процесс

Квазистациона'рный проце'сс, процесс, протекающий в ограниченной системе и распространяющийся в ней так быстро, что за время распространения этого процесса в пределах системы её состояние не успевает измениться. Поэтому при рассмотрении процесса можно пренебречь временем его распространения в пределах системы. Например, если в каком-либо участке замкнутой электрической цепи действует переменная внешняя эдс, но время распространения электромагнитного поля до наиболее удалённых точек цепи столь мало, что величина эдс не успевает сколько-нибудь заметно изменяться за это время, то изменения напряжений и токов в цепи можно рассматривать как К. п. В этом случае переменные электрические и магнитные поля, создаваемые движущимися в цепи электрическими зарядами (распределение и скорости которых изменяются со временем), оказываются в каждый момент времени такими же, какими были бы стационарные электрические и магнитные поля (поля стационарных зарядов и токов), распределение и скорости которых (не изменяющиеся со временем) совпадают с распределением и скоростями зарядов, существующими в системе в рассматриваемый момент времени. Однако в случае нестационарных токов наряду с электрическими полями зарядов возникают вихревые электрические поля, обусловленные изменениями магнитных полей. Действие этих полей может быть учтено путём введения эдс индукции (наряду со сторонними эдс источников). Но введение эдс индукции не нарушает основной черты стационарных токов — равенства сил токов во всех сечениях неразветвлённой цепи. В силу этого для электрических цепей, удовлетворяющих условиям квазистационарности (квазистационарных токов), справедливы Кирхгофа правила.  Условия квазистационарности наиболее просто формулируются для случая периодических процессов. Процессы можно считать квазистационарными в случае, если время распространения между наиболее удалёнными друг от друга точками рассматриваемой системы мало по сравнению с периодом процесса или, что то же самое, когда расстояние между указанными точками мало по сравнению с соответствующей длиной волны.

  Понятие К. п. может быть применено и к др. системам — механическим, термодинамическим. Если, например, на один из концов упругого стержня действует переменная внешняя сила, направленная вдоль стержня, и если условие квазистационарности выполняется, т. е. за время распространения продольной упругой волны от одного конца стержня до другого величина силы не успевает измениться, то ускорения всех точек стержня в каждый момент времени определяются значением силы в этот же момент времени. Процесс теплопроводности можно считать К. п., если выравнивание температуры в теплопроводящем стержне происходит значительно быстрее, чем изменение внешних условий: температур T1 и T2 концов стержня.

Квазистационарный ток

Квазистациона'рный ток, относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов (прямая пропорциональность между током и напряжением — Ома закон, Кирхгофа правила и др.). Подобно постоянным токам, К. т. имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. Однако при расчёте К. т. (в отличие от расчёта цепей постоянного тока) необходимо учитывать возникающую при изменениях тока эдс индукции. Индуктивности, ёмкости, сопротивления ветвей цепи К. т. могут считаться сосредоточенными параметрами.

  Для того чтобы данный переменный ток можно было считать К. т., необходимо выполнение условия квазистационарности (см. Квазистационарный процесс), которое для синусоидальных переменных токов сводится к малости геометрических размеров электрической цепи по сравнению с длиной волны рассматриваемого тока. Токи промышленной частоты, как правило, можно рассматривать как К. т. (частоте 50 гц соответствует длина волны ~ 6000 км). Исключение составляют токи в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.

Квазиупругая сила

Квазиупру'гая си'ла, направленная к центру О сила F, величина которой пропорциональна расстоянию r от центра О до точки приложения силы; численно F = cr, где с — постоянный коэффициент. Тело, находящееся под действием К. с., обладает потенциальной энергией П = 1/2cr2. Название «К. с.» связано с тем, что аналогичным свойством обладают силы, возникающие при малых деформациях упругих тел (так называемые силы упругости). Для материальной точки, находящейся под действием К. с., центр О является положением устойчивого равновесия. Выведенная из этого положения точка будет совершать около О линейные гармонические колебания или описывать эллипс (в частности, окружность).

Квазичастицы

Квазичасти'цы (от квази... и частицы), одно из фундаментальных понятий теории конденсированного состояния вещества, в частности теории твёрдого тела. Теоретическое описание и объяснение свойств конденсированных сред (твёрдых тел и жидкостей), исходящее из свойств составляющих их частиц (атомов, молекул), представляет большие трудности, во-первых, потому, что число частиц огромно (~ 1022 частиц в 1 см3), и, во-вторых, потому, что они сильно взаимодействуют между собой. Из-за взаимодействия частиц полная энергия такой системы, определяющая многие её свойства, не является суммой энергий отдельных частиц, как в случае идеального газа. Частицы конденсированной среды подчиняются законам квантовой механики; поэтому свойства совокупности частиц, составляющих твёрдое тело (или жидкость), могут быть поняты лишь на основе квантовых представлений. Развитие квантовой теории конденсированных сред привело к созданию специальных физических понятий, в частности к концепции К. — элементарных возбуждений всей совокупности взаимодействующих частиц. Особенно плодотворные результаты концепция К. дала в теории кристаллов и жидкого гелия.

  Свойства квазичастиц. Оказалось, что энергию E кристалла (или жидкого гелия) можно приближённо считать состоящей из двух частей: энергии основного (невозбуждённого) состояния E (наименьшая энергия, соответствующая состоянию системы при абсолютном нуле температуры) и суммы энергий El элементарных (несводимых к более простым) движений (возбуждений):

E = E +

Большая Советская Энциклопедия (КВ) - i-images-111530131.png

  Индекс l характеризует тип элементарного возбуждения, nl целые числа, показывающие число элементарных возбуждений типа l.

  Т. о., энергию возбуждённого состояния кристалла (гелия) оказалось возможным записать так же, как и энергию идеального газа, в виде суммы энергий. Однако в случае газа суммируется энергия его частиц (атомов и молекул), а в случае кристалла суммируются энергии элементарных возбуждений всей совокупности атомов (отсюда термин «К.»). В случае газа, состоящего из свободных частиц, индекс l обозначает импульс р частицы, El её энергию El = p2/2m, m — масса частицы), nl число частиц, обладающих импульсом р. Скорость u = p/m.

  Элементарное возбуждение в кристалле также характеризуют вектором р, свойства которого похожи на импульс, его называют квазиимпульсом. Энергия El элементарного возбуждения зависит от квазиимпульса, но эта зависимость El(p) носит не такой простой характер, как в случае свободной частицы. Скорость распространения элементарного возбуждения также зависит от квазиимпульса и от вида функции El(p). В случае К. индекс l включает в себя обозначение типа элементарного возбуждения, поскольку в конденсированной среде возможны элементарные возбуждения, разные по своей природе (аналог — газ, содержащий частицы различного сорта).

6
{"b":"106100","o":1}