Оптические К. м. особенно удобны для измерения слабых полей, < 1 э. Чувствительность, которая может быть достигнута при помощи таких приборов, ~10–6—10–7э, что позволяет измерять очень слабые поля, в частности в космическом пространстве.
Сверхпроводящий магнитометр основан на квантовании магнитного потока, захваченного сверхпроводящим кольцом. Величина захваченного потока кратна кванту магнитного потока Ф= 2×10–7э ×см2. Полный ток, протекающий через параллельные соединения двух переходов Джозефсона (сверхпроводящее кольцо, разделённое по диаметру очень тонким слоем изолятора; см. Джозефсона эффект) в результате сложения токов, проходящих по каждой из ветвей (рис. 3), изменяется пропорционально cos e/
Ф, где Ф — магнитный поток, охватываемый кольцом,
е — заряд электрона. Этот ток достигает максимума всякий раз, когда Ф =
nФ
(
n — целое число). Наблюдая за изменениями тока, проходящего через двойной переход Джозефсона, можно измерять магнитный поток Ф и, зная площадь сечения перехода, определить напряжённость измеряемого магнитного поля. Если площадь, охватываемая двумя переходами, равна 1
мм2,
то максимумы тока разделены интервалом в 2g. Таким методом можно регистрировать десятую часть этого интервала. Чувствительность метода составляет в этом случае 0,2 гаммы. Для рассмотренного примера наиболее сильное поле, которое можно измерить, составляет около 20 гамм.
Все К. м. не боятся вибраций; их показания не зависят от ориентации прибора относительно измеряемого поля Н, слабо зависят от изменения температуры, давления, влажности и т.п.
Лит.: Померанцев Н. М., Рыжков В. М., Скроцкий Г. В., Физические основы квантовой магнитометрии, М., 1972; Абрагам А., Ядерный магнетизм, пер. с англ., М., 1963.
Г. В. Скроцкий.
Рис. 2. Схема оптического квантового магнитометра: Л — источник света; СФ — светофильтр; П1 — поляроид; П2 — пластинка (l/4), создающая разность фаз 90° для получения циркулярно поляризованного света; К — колба, наполненная парами щелочного металла: ф — фотоприёмник; Н — измеряемое поле.
Рис. 3. Схема сверхпроводящего магнитометра: С — сверхпроводящее кольцо с двумя переходами Джозефсона (а и б); Т — согласующий трансформатор; У1 — узкополосный усилитель с детектором; У2 — усилитель постоянного тока; Р — самописец. Магнитный поток через кольцо (перпендикулярный плоскости рисунка — сверху вниз) изображен крестиками. Его изменение приводит к появлению периодической эдс на входе усилителя У1.
Рис. 1. Схема протонного магнитометра: L — катушка, создающая вспомогательное намагничивающее поле H; П — катушка, в которой возникает эдс, обусловленная прецессией ядерных моментов вокруг измеряемого магнитного поля Н; У — усилитель сигнала; Ч — частотомер, градуированный в э.
Квантовый усилитель
Ква'нтовый усили'тель, устройство для усиления электромагнитных волн за счёт вынужденного излучения возбуждённых атомов, молекул или ионов. Эффект усиления в К. у. связан с изменением энергии внутриатомных (связанных) электронов, движение которых описывается квантовой механикой. Поэтому, в отличие, например, от ламповых усилителей, в которых используются потоки свободных электронов, движение которых хорошо описывается классической механикой, эти усилители получили название квантовых (см. Квантовая электроника).
Т. к. кроме вынужденных квантовых переходов возбуждённых атомов в состояние с меньшей энергией возможны их самопроизвольные (спонтанные) переходы, в результате которых излучаются волны, имеющие случайные амплитуду, фазу и поляризацию, то они добавляются к усиливаемой волне в виде шумов. Спонтанное излучение является единственным, принципиально неустранимым источником шумов К. у. Мощность спонтанного излучения очень мала в радиодиапазоне и резко растет при переходе к оптическому диапазону. В связи с этим К. у. радиодиапазона (мазеры) отличаются исключительно низким уровнем собственных шумов [в них отсутствуют шумы, связанные с неравномерностью электронного потока, неизбежные в радиолампах (см. Дробовой шум); кроме того, К. у. радиодиапазона работают при температурах, близких к абсолютному нулю, и шумы, связанные с тепловым движением электронов в цепях усилителя, очень малы]. Благодаря чрезвычайно низкому уровню шумов чувствительность К. у., т. е. способность усиливать очень слабые сигналы, велика. К. у. применяются в качестве входных ступеней в самых высокочувствительных радиоприёмных устройствах в диапазоне длин волн от 4 мм до 50 см. К. у. радиодиапазона значительно увеличили дальность действия космических линий связи с межпланетными станциями, планетных радиолокаторов и радиотелескопов.
В оптическом диапазоне К. у. широко используются как усилители мощности лазерного излучения. К. у. света имеют много общего по принципу действия и конструкции с квантовыми генераторами света (см. Лазер).
Вынужденный переход атома из состояния с энергией E2 в состояние с меньшей энергией E1 сопровождающийся испусканием кванта электромагнитной энергии E2 - E1 = hn (n— частота вынуждающей и испускаемой волн, h — Планка постоянная), приводит к усилению колебаний. Усиление, создаваемое одним атомом, очень мало. Но если колебание частоты n распространяется в веществе, содержащем большое число одинаковых возбуждённых атомов, находящихся на уровне E2, то усиление может стать достаточно большим. Атомы же, находящиеся на нижнем уровне E1, в результате вынужденного поглощения, наоборот, ослабляют волну. В результате вещество будет ослаблять или усиливать волну в зависимости от того, каких атомов в ней больше, невозбуждённых или возбуждённых, или, как говорят, какой из уровней энергии более населён атомами.
Если вещество находится в состоянии равновесия термодинамического, то распределение частиц по уровням энергии определяется его температурой, причём уровень с меньшей энергией более населён, чем уровень с большей энергией (рис. 1; см. также Больцмана статистика). Такое вещество всегда поглощает электромагнитные волны. Вещество начинает усиливать — становится активным, лишь тогда, когда равновесие нарушается и возбуждённых атомов становится больше, чем невозбуждённых (инверсия населённостей). Чем больше число атомов на верхнем уровне превышает число атомов, находящихся на нижнем уровне, т. е. чем больше инверсная разность населённости DNи= N2 — N1, тем эффективней усиление.
Однако инверсное состояние вещества не может существовать сколь угодно долго. После прекращения внешнего воздействия в результате теплового движения частиц и взаимодействия между ними через некоторое время снова устанавливается равновесное распределение населённостей уровней (рис. 1). Этот процесс (релаксация) происходит и во время действия внешнего возмущения, стремясь восстановить тепловое равновесие в веществе. Поэтому внешнее воздействие должно быть достаточно сильным, чтобы привести вещество в состояние с инверсией населённостей и не должно быть однократным.