Табл. 3. — Геохимическая классификация химических элементов Сидерофильные (железо) | Халькофильные (сульфиды) | Литофильные (силикаты и др.) | Fe, Ni, Co, Ru, Rh, Rd, Os, Ir, Pt, (Mo), Au, Re, (P), (As), (C), (Ge), (Ga),(Sn), (Sb), (Cu) | S, Se, Te, Cu, Zn, Cd, Pb, Sn, Mo, Ge, As, Ga, Sb, Bi, Ag, Hg, In, Tl, (Fe), (Ni), (Co) | H, O, N, Si, Ti, Zr, Hf, F, Cl, Br, I, B, Al, Sc, Y, Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ra, V, Cr, Mn, W, Th, Nb, Ta, U, Ac, Pa, (S), (P), (Sn), (C), (Ga), (Fe), (Ni), (Go), редкоземельные элементы |
С открытием изотопов стала развиваться Г. изотопов — изучение процессов разделения изотопов химических элементов в природных процессах, особенно лёгких атомов Н, С, О, N, S и др. Этим методом часто удаётся установить способ и условия разделения химических элементов и образования конкретных минералов и рудных залежей
Геохимические процессы разделения элементов на Земле поддерживаются прежде всего теплом, генерируемым радиоактивными элементами (радиогенное тепло), гравитационной энергией. На поверхности Земли значительную роль играет энергия солнечных лучей, которая, в частности, трансформируется живым веществом в химическую энергию нефтей и углей. Геохимические процессы. Первичное разделение холодного недифференцированного вещества Земли на оболочки произошло под влиянием тепла адиабатического сжатия планеты и радиогенного тепла. В мантии Земли на различных глубинах, особенно в астеносфере, возникали многочисленные расплавленные очаги. Разделение на оболочки шло путём зонного плавления, которое не требует полного расплавления мантии. Силикатное вещество планеты разделялось на тугоплавкую фазу — ультраосновные породы верхней мантии, и легкоплавкую фазу — основные породы (базальты) земной коры. Легкоплавкое вещество проплавляло кровлю магматической камеры, а тугоплавкое кристаллизовалось на дне камеры; т. о. легкоплавкое вещество перемещалось вверх к поверхности Земли. При этом метасиликаты инконгруентно разлагались на ортосиликаты и кремнекислоту, обогащенную химическими элементами, понижающими температуру плавления: щелочными элементами, Si, Ca, Al, U, Th, Sr и др. редкими литофильными элементами. Вещества, повышающие температуру плавления (Mg. Fe, Ni, Co, Cr и др.), сохранились по преимуществу в тугоплавкой фазе, т. е. остались в мантии Земли. Вместе с зонным плавлением шёл процесс дегазации верхней мантии. Процессы выплавления и дегазации вещества мантии имеют периодический характер. После того как произошёл вынос тепла и вещества из глубин на поверхность Земли, требовалось время на новое разогревание очага. С таким геохимическим циклом связан весь ритм тектоно-магматической и вулканической деятельности и метаморфических преобразований. Этот процесс шёл также на Луне и, по-видимому, на всех планетах земного типа. Химическая эволюция Земли поддерживается и регулируется непрерывным процессом выплавления и дегазации вещества мантии за счёт энергии радиоактивного распада. Вещество мантии Земли (перидотиты, дуниты и др. ультраосновные породы) имеет химический состав, приближающийся к метеоритному (табл. 4). Табл. 4 — Химический состав горных пород Земли, Луны и метеоритов Окислы и элементы | Каменные метеори- ты (хондри- ты) | Ультраосновные породы Земли | Примитив- ные базальты Земли (толеитовые) | Эвкриты (базаль-тичес- кие камен- ные Метео- риты) | Породы поверхности Луны | Средний состав оса-дочных по- род Земли | Граниты Земли | кристаллические (базальт) | Тонкодиспергированные (реголит) | «Аполлон-12» | «Луна-16» | « Аполлон-12» | «Луна-16» | В % по массе | Si02' | 38,04 | 43,54 | 50,83 | 48,5 | 40 | 43,8 | 42 | 41,7 | 46,20 | 70,8 | TiO2 | 0,11 | 0,05 | 2,03 | 0,6 | 3,7 | 4,9 | 3,1 | 3,39 | 0,58 | 0,4 | Al2O3 | 2,5 | 3,90 | 14,0 | 12,96 | 11,2 | 13,65 | 14 | 15,33 | 10,50 | 14,6 | Fe0 | 12,45 | 9,84 (+2,51 Fe23) | 9,0(+2,88 Fе2Оз) | 17,6 | 21,3 | 19,35 | 17 | 16,64 | 1,95 (+3,3 Fe23 | 1,8 (+1.6 Fe23) | Mg0 | 23,84 | 34,02 | 6,34 | 8,28 | 11,7 | 7,05 | 12 | 8,78 | 2,87 | 0,9 | Са0 | 1,95 | 3,46 | 10,42 | 10,23 | 10,7 | 10,4 | 10 | 12,49 | 14,0 | 2,0 | Na2 | 0,98 | 0,56 | 2,23 | 0,75 | 0,45 | 0,38 | 0,40 | 0,34 | 1,17 | 3,5 | K2 | 0,17 | 0,25 | (0,16) | 0,24 | 0,065 | 0,15 | 0,18 | 0,10 | 2,07 | 4,0 | Мn0 | 0,25 | 0,21 | 0,18 | 0,43 | 0,26 | 0,20 | 0,25 | 0,21 | 0,16 | 0,10 | Сг20з | 0,36 | 0,34 | 0,4 | 0,38 | 0,55 | 0,28 | 0,41 | 0,28 | 0,09 | 0,07 | Zr02 | 0,004 | 0,004 | 0,01 | 0,006 | 0,023 | 0,04 | 0,09 | 0,013 | 0,01 | 0,003 | 104 % по массе | Rb | 5 | 1 | 1,2 | 0,2 | 0,65 | - | 3,2 | 5,9 | 200 | 200 | Ba | 6 | 1 | 14 | 30 | 72 | 206 | 420 | 144 | 500 | 800 | Sr | 10 | 10 | 130 | 80 | 145 | 445 | 170 | 169 | 300 | 700 | Y | 2,0 | 1 | 43 | 22 | 50 | 54 | 13 | 58 | 30 | 30 | V | 70 | 40 | 290 | 50 | 88 | 425 | 64 | 61 | 100 | 40 | Sc | 6 | 1,5 | 61 | 35 | 50 | 20 | 47 | 27 | 10 | 3 | Ni | 13500 | 2000 | 97 | 1000 | 54 | 147 | 200 | 190 | 45 | 8 | Co | 800 | 200 | 32 | 40 | 40 | 29 | 42 | 53 | 10 | 5 | Li | 3 | 0,5 | 9 | 5,5 | 5,5 | - | 11 | 10 | 40 | 40 | Th | 0,05 | 0,015 | ~0,5 | 0,9 | 0,9 | 1,1 | 6 | 0,5 | 10 | 18 | U | 0,025 | 0,005 | ~0,1 | 0,25 | 0,25 | 0,2 | 1,5 | 0,1 | 3 | 3,5 |
Господствующие в мантии высокие температуры и давления приводят к полиморфным изменениям минералов, например к образованию стишовита, т. е. кварца с плотностью 4350 кг/м3 (при нормальном давлении и температуре), и т. п. Благодаря этому вещество мантии разделяется на зоны с разной плотностью. Вещество верхней мантии проникает к поверхности на материках в дунитовых поясах, богатых хромитами, платиноидами, высокотемпературными сульфидами, в океанах — в рифтовых долинах срединноокеанических хребтов.
|