Литмир - Электронная Библиотека
Содержание  
A
A

Большая Советская Энциклопедия (ГИ) - i-images-174190290.png

  где А—В — гидролизующееся вещество, А—Н и В—ОН — продукты Г.

  Равновесие в процессе Г. солей подчиняется действующих масс закону. Если в результате Г. образуется нерастворимое или легколетучее вещество, Г. идёт практически до полного разложения исходной соли. В остальных случаях Г. солей проходит тем полнее, чем слабее соответствующая соли кислота или основание.

  Если Г. подвергается соль, образованная слабой кислотой и сильным основанием, например KCN, раствор имеет щелочную реакцию; это объясняется тем, что анион слабой кислоты частично связывает образовавшиеся при диссоциации воды ионы Н+ и в растворе остаётся избыток ионов OH-:

 

Большая Советская Энциклопедия (ГИ) - i-images-140751764.png

  Раствор соли сильной кислоты и слабого основания, например NH4Cl, — кислый

 

Большая Советская Энциклопедия (ГИ) - i-images-153282215.png

  Если заряд катиона (или аниона) соли больше единицы, то Г. часто приводит к образованию кислых (или основных) солей в качестве продуктов первой ступени процесса, например:

  CuCl2 ® Cu (OH) Cl ® Cu (OH)2.

  Количественной характеристикой Г. солей может служить степень гидролиза (a), определяемая отношением концентрации гидролизованной части молекул к общей концентрации данной соли в растворе; в большинстве случаев она невелика. Так, в 0,1 молярных растворах ацетата натрия CH3COONa или хлорида аммония NH4CI при 25 °С a = 0,01%, а для ацетата аммония CH3COONH4a = 0,5%. С повышением температуры и разбавлением раствора степень Г. увеличивается.

  Г. солей лежит в основе многих важных процессов в химической промышленности и лабораторной практике. Частичный Г. трёхкальциевого силиката является причиной выделения свободной извести при взаимодействии портландцемента с водой (см. Цемент). Благодаря Г. возможно существование буферных систем, способных поддерживать постоянную кислотность среды. Такие растворы имеют и очень важное физиологическое значение — постоянная концентрация ионов Н+ необходима для нормальной жизнедеятельности организма. С Г. солей связан ряд геологических изменений земной коры и образование минералов, формирование природных вод и почв.

  Гидролиз органических соединений — расщепление органического соединения водой с образованием двух или более веществ. Обычно Г. осуществляется в присутствии кислот (кислотный Г.) или щелочей (щелочной Г.). Гидролитическому расщеплению чаще всего подвергаются связи атома углерода с другими атомами (галогенами, кислородом, азотом и др.). Так, щелочной Г. галогенидов служит методом получения (в том числе и промышленного) спиртов и фенолов, например:

 

Большая Советская Энциклопедия (ГИ) - i-images-129601907.png

  В зависимости от строения углеводородного радикала (R) и от условий реакции Г. галогенпроизводных может осуществляться как мономолекулярный (SN1) или бимолекулярный (SN2) процесс. В случае мономолекулярной реакции вначале происходит ионизация связи углерод — галоген, а затем образующийся ион карбония реагирует с водой; щёлочь, если она добавлена, не влияет на скорость Г. и служит только для нейтрализации выделяющейся галогеноводородной кислоты и смещения равновесия:

 

Большая Советская Энциклопедия (ГИ) - i-images-107480447.png

  В случае бимолекулярной реакции скорость Г. прямо пропорциональна концентрации щёлочи:

  R—Hal+ + HO- ® R—OH + Hal-SN2.

  Исключительно важен Г. сложных эфиров (реакция, обратная этерификации):

Большая Советская Энциклопедия (ГИ) - i-images-191504768.png

  Кислотный Г. сложных эфиров является обратимым процессом:

Большая Советская Энциклопедия (ГИ) - i-images-139537521.png

  Щелочной Г. сложных эфиров необратим, поскольку он приводит к образованию спирта и соли кислоты:

Большая Советская Энциклопедия (ГИ) - i-images-117539544.png

  Этот процесс широко применяется в промышленности для получения спиртов и кислот, например при омылении жиров с целью получения глицерина и солей высших алифатических кислот (мыла).

  Аналогично сложным эфирам гидролизуются амиды кислот:

Большая Советская Энциклопедия (ГИ) - i-images-145936506.png

  Случаи Г. углерод-углеродной связи сравнительно редки. К ним относятся, в частности, кетонное (действием кислот и разбавленных щелочей) и кислотное (действием концентрированной щёлочи) расщепление 1,3-дикарбонильных соединений, например ацетоуксусного эфира:

Большая Советская Энциклопедия (ГИ) - i-images-177857621.png

  Термин «Г.» обычно применяется в органической химии также по отношению к некоторым процессам, которые более правильно было бы называть гидратацией; примером может служить превращение нитрилов кислот в амиды:

Большая Советская Энциклопедия (ГИ) - i-images-170208431.png

  Г. сложноэфирных, гликозидных (в углеводах) и амидных (в белках) связей играет огромную роль в жизнедеятельности любых организмов, например, в таких процессах, как усвоение пищи, передача нервных импульсов и т. п. Г. в живом организме катализируется ферментами гидролазами. См. также Гидролиз растительных материалов.

  Лит.: Киреев В. А., Курс физической химии, 2 изд., М., 1956; Реутов О. А., Теоретические проблемы органической химии, 2 изд., М., 1964.

Гидролиз древесины

Гидро'лиз древеси'ны, см. Гидролиз растительных материалов.

Гидролиз растительных материалов

Гидро'лиз расти'тельных материа'лов, взаимодействие полисахаридов (см. Сахара) непищевого растительного сырья (древесные отходы, хлопковая шелуха, подсолнечная лузга и т.п.) с водой в присутствии катализаторов — минеральных кислот. Исходное растительное сырьё обычно содержит до 75% нерастворимых в воде полисахаридов в виде целлюлозы и гемицеллюлоз, при разложении которых вначале образуются промежуточные соединения, а затем простейшие сахара — монозы. Наряду с образованием моноз происходит и их частичный распад с образованием фурфурола, органических кислот, гуминовых кислот и др. веществ. Скорость гидролиза растет с увеличением температуры и концентрации кислоты.

  Г. р. м. является основой гидролизных производств, служащих для получения важных пищевых, кормовых и технических продуктов. В производственных условиях продуктами Г. р. м. являются гидролизаты — растворы моноз (пентоз и гексоз, в частности глюкозы), летучие вещества (органические кислоты, спирты) и твёрдый остаток — гидролизный лигнин. Выход моноз может достигать 90% от полисахаридов. Гидролизаты подвергают дальнейшей биохимической или химической переработке в зависимости от профиля гидролизных производств и требуемых видов товарной продукции.

  Наиболее распространена биохимическая переработка гидролизатов для получения белково-витаминных веществ — дрожжей кормовых. Один из важнейших продуктов гидролизного производства — этиловый спирт также получают биохимическим путём— сбраживанием гексоз гидролизатов.

  Пищевую глюкозу и техническую ксилозу получают соответственно из гексозных и пентозных гидролизатов путём очистки их от минеральных и органических примесей, упаривания и кристаллизации. При химической переработке гидролизатов восстановлением содержащихся в них моноз получают многоатомные спирты: из гексоз образуются соответствующие гекситы (сорбит, маннит, дульцит и т.д.), а из пентоз — пентиты (ксилит, арабит и др.). Путём гидрогенолиза многоатомных спиртов можно получить глицерин, пропиленгликоль и этиленгликоль. Дегидратацией пентоз получают фурфурол, выход которого зависит от состава сырья и условий гидролиза и дегидратации. При дегидратации гексоз образуется левулиновая кислота, используемая в ряде химических синтезов.

43
{"b":"105973","o":1}