С другой стороны, с точки зрения классической механики, a-частица с энергией Е < V должна постоянно находиться внутри ядра, потому что для преодоления потенциального барьера у неё не хватает энергии. В рамках классических представлений явление a-радиоактивности понять невозможно.
Квантовая механика, учитывая волновую природу a-частиц, показывает, что существует конечная вероятность «просачивания» a-частицы через потенциальный барьер (туннельный эффект ). Барьер становится как бы частично прозрачным для a-частицы. Прозрачность барьера зависит от его высоты V и ширины B следующим образом:
прозрачность
(*).
Здесь b — величина, зависящая от радиуса r ядра, m — масса a-частицы, Е — её энергия (см. рис. 2 ). Прозрачность (проницаемость) барьера тем больше, чем меньше его ширина и чем ближе к вершине потенциального барьера расположен энергетический уровень a-частицы (чем больше энергия a-частицы в ядре).
Вероятность А.-р. пропорциональна проницаемости потенциального барьера. Поскольку с увеличением энергии a-частицы уменьшается ширина барьера (рис. 2 ), становится понятной полученная экспериментально резкая зависимость вероятности А.-р. от Е — кинетической энергии a-частиц. Например, при увеличении энергии испускаемых a-частиц с 5 до 6 Мэв вероятность А.-р. увеличивается в 107 раз.
Вероятность А.-р. зависит также и от вероятности образования a-частицы в ядре. Прежде чем a-частица покинет ядро, она должна там сформироваться. Постоянно a-частицы в ядре не существуют. Четыре элементарные частицы, из которых она состоит, участвуют в сложном движении нуклонов в ядре и нет никакого способа отличить их от др. частиц этого ядра. Однако существует заметная (~10-6 ) вероятность образования a-частицы в ядре на какое-то короткое время в результате случайного сближения 4 нуклонов. Только когда a-частица покинет ядро и окажется достаточно далеко от него, можно рассматривать a-частицу и ядро как две отдельные частицы.
Вероятность А.-р. резко зависит от размера ядра [см. формулу (*)], что позволяет использовать А.-р. для определения размеров тяжёлых ядер.
Как уже упоминалось, энергия a-частиц, вылетающих из ядра в результате А.-р., должна быть точно равна энергетическому эквиваленту разности масс ядер до и после А.-р., т. е. величине Е. Это утверждение справедливо только для случая, когда конечное ядро
образуется в основном состоянии. Но если конечное ядро образуется в одном из возбуждённых состояний, то энергия a-частицы будет меньше на величину энергии этого возбуждённого состояния.
Действительно, экспериментально показано, что a-излучение многих радиоактивных элементов состоит из нескольких групп a-частиц, энергии которых близки друг к другу («тонкая структура» a-спектра). В качестве примера на рис. 3 показан спектр a-частиц от распада
(висмут-212).
На рис. 4 изображена энергетическая схема a-распада
на основное и возбужденные состояния конечного ядра
Разность энергий между основной группой и линиями тонкой структуры составляет 0,04, 0,33, 0,47 и 0,49 Мэв. Экспериментально различить линии тонкой структуры a-спектров можно только с помощью магнитных альфа-спектрометров .
Знание тонкой структуры спектров a-частиц позволяет вычислить энергию возбуждённых состояний конечного ядра.
Некоторые радиоактивные изотопы испускают небольшое количество a-частиц с энергиями, гораздо большими, чем энергия основной группы a-частиц. Так, например, в спектре a-частиц от распада
присутствуют две группы с энергиями на 0,7 и 1,9
Мэв больше, чем энергия основной группы. Интенсивность этих двух групп т. н. длиннопробежных a-частиц составляет всего ~ 10
-5 от полной интенсивности a-излучения. След одной из таких частиц виден на
рис. 5 . Существование длиннопробежных частиц связано с тем, что А.-р. могут испытывать ядра, находящиеся в возбуждённом состоянии (с большей энергией).
Многие основные понятия атомной и ядерной физики обязаны своим происхождением изучению a-радиоактивности. Теория А.-р., предложенная в 1928 Г. Гамовым и независимо от него Г. Герни и Э. Кондоном, явилась первым применением квантовой механики к ядерным процессам. Изучение рассеяния a-частиц привело к понятию об атомном ядре как центре массы и положительного заряда атома. Облучение a-частицами лёгких элементов привело к открытию ядерных реакций и искусственной радиоактивности.
Лит.: Глесстон С., Атом. Атомное ядро. Атомная энергия, пер. с англ., М., 1961; Гольданский В. И., Лейкин Е. М., Превращения атомных ядер, М., 1958.
В.С. Евсеев.
Рис. 5. Фотография следа длиннопробежной a-частицы (справа) от распада полония-212.
Рис. 2. Потенциальная энергия взаимодействия a-частицы с конечным ядром. V — высота потенциального барьера, В — его ширина, Е — энергия a-частицы, r — расстояние от центра ядра.
Рис. 3. Спектр a-частиц от распада висмута-212. Высота линий соответствует вероятности испускания a-частиц с данной энергией.
Рис. 1. Фотографии следов a-частиц в камере Вильсона, a-частицы испускаются источником АсС + АсС'. На рис. видны 2 следа от a-частиц, испускаемых АсС'. Эти частицы имеют больший пробег (6,6 см ), чем a-частицы АсС (5,4 см ).
Рис. 4. Энергетическая схема a-распада висмута-212. Максимальная энергия
a-частиц соответствует переходу в основное состояние, a1 , a2 , a3 и a4 — альфа-частицы, испускаемые при переходе конечного ядра в одно из возбуждённых состояний.
Альфа-спектрометр
А'льфа-спектро'метр, прибор для измерения энергии a-частиц, испускаемых радиоактивными ядрами (см. Альфа-распад ). Принцип действия А.-с. основан либо на магнитном анализе a-частиц (магнитные А.-с.), либо на исследовании их ионизующего действия (ионизационные камеры).
Магнитный А.-с .— вакуумный прибор, в котором испускаемые каким-либо источником a-частицы проходят через магнитное поле, перпендикулярное направлению их движения, отклоняясь под действием этого поля на различные углы, в зависимости от того, какова величина их энергии.
Траектории заряженных частиц, движущихся в однородном поперечном магнитном поле, представляют собой окружности. Радиус окружности г, импульс частиц р и магнитная индукция В связаны между собой соотношением ср /е = Br, где с — скорость света, е — заряд a-частицы. Зависимость r от импульса р позволяет производить анализ a-частиц по энергии, так как группы вылетевших из источника a-частиц, обладающих различной энергией, после прохождения через магнитное поле собираются (фокусируются) в разных местах коллектора (детектора). В качестве детекторов a-излучения в магнитных А.-с. обычно применяются фотопластинки. Обработка результатов измерения производится путём счёта числа треков (следов a-частиц) под микроскопом.