Литмир - Электронная Библиотека
Содержание  
A
A

Фалесу изначально известен факт неограниченности натурального ряда, а Эвклид доказывает теорему уже значительно более сложного содержания – об отсутствии верхнего предела последовательности простых чисел. Пифагор полагает число краеугольным камнем мироздания (хрестоматийная максима: "числа правят миром"), и пифагорейская школа не только устанавливает множество собственно математических истин, но и применяет элементарно-математические подходы к философии, натурфилософии, космологии, искусству – в частности, к музыке, скульптуре, архитектуре, – даже к религии. Пифагорейские общины энергично вмешиваются и в политику, но в конце концов оказались разгромленными. Влияние пифагорейцев на другие школы огромно, проходя красной нитью через Платона, Аристотеля, александрийских грамматиков, неоплатоников. Один из историков античности, А.И.Зайцев, имеет все основания утверждать: культура греко-римского мира в целом предстает нам в пифагорейской подсветке [128] . Карл Поппер, обязанный своей всемирной известностью политологическому труду "Открытое общество и его враги", в рамках своей основной профессии занимается специальными исследованиями математизированных социально-политических воззрений Платона, см. [260] . Сам же Платон полагал: "Точно так же никто, не познав ‹числа›, никогда не сможет обрести истинного мнения о справедливом, прекрасном, благом и других подобных вещах и расчислить это для себя и для того, чтобы убедить другого" ("Послезаконие" [251:III, 978, b] ).

На чем остановился эллинский мир в своих знаниях о числе? В нашу задачу, конечно, не входит детальный обзор античной арифметики, учения о четности и нечетности, фигурных числах, пропорциях и т.д. Отметим лишь, что греки и римляне уверенно оперировали с положительными целыми числами и дробями, т.е. с числами рациональными, и столкнулись с иррациональностью некоторых радикалов. Отрицательные числа, нуль, бесконечность, числа трансцендентные – понятия более поздние. К особенностям античного подхода относится тесная увязка арифметических знаний с логикой, гносеологией, применение их к философии, искусству, естественнонаучным областям, к наукам о языке, литературе и обществе.

Ренессанс возвращает активный и живой интерес к непосредственному использованию математических инструментов в самых разных отраслях знаний и деятельности, Новое время осуществляет грандиозный прорыв в области математизации наук о природе. Считавший себя платоником Галилей (кстати, как и Кеплер, Коперник) выдвигает в "Пробирщике" тезис "Книга природы написана на языке математики", Декарт предлагает геометрический метод как для философии, так и для физики ,(3) а Ньютон и Лейбниц разрабатывают для решения физических задач новый математический аппарат, не известный ни античности, ни средневековью. Но у такого успеха обнаруживается и теневая сторона. С одной стороны, резко возросли концептуальные, эвристические возможности физики, она превращается в эталон строгих и точных наук. С другой же – названный прорыв оказался слишком специализированным, односторонним. Это обусловлено не только специфической "материалистичностью", "механистичностью" избранной установки исследования, но и не в последнюю очередь особенностями самого возобладавшего математического аппарата – дифференциального и интегрального исчислений, – накладывающего на изучаемые объекты крайне стеснительные требования, в частности, континуальности, бесконечной делимости. За новое знание пришлось заплатить чересчур высокую цену.

Именно с тех пор ведет отсчет фатальное расщепление на науки о природе, с одной стороны, и гуманитарные, социальные, с другой. После провала наивных, хотя и по-своему героических, попыток распространить достижения механики на философские, социальные, искусствоведческие, антропологические вопросы, превратить механические принципы в универсальный ключ к мирозданию и мировоззрению (так называемый механицизм) упомянутый разрыв стал очевидным и, как полагали, непреложным. Неоправданная, если не сказать неправедная, экспансия новых точных наук вызвала ответно-симметричную реакцию: из философии, истории, искусства и искусствоведения, из гуманитарных и социальных наук изгоняются сознательные математические приемы, включая те, что традиционно применялись в них на протяжении веков и тысячелетий.(4) Появление малейших признаков математики в гуманитарном или обществоведческом контексте оказывалось достаточным поводом, чтобы подвергнуть автора остракизму, обвинить в паранаучности, изгнать из корпорации серьезных ученых. Отдельные исключения, попытки протянуть друг другу руки – попытки, отметим, большей частью робкие и неудачные – не отменяют этого правила.

Нам еще не раз на протяжении книги, по разным поводам придется возвращаться к означенной теме, пока же упомянем несколько частных моментов. Революция в точных науках, в математике, разумеется, не сводилась только к созданию дифференциального и интегрального исчислений. Переосмыслению подверглись и сами представления о числе. Последнее все более отчуждается от качества, формы, выражает исключительно количество (хочется добавить: "пустое количество"), отторгается и от логики, теряет внутреннюю обязательность и, так сказать, экзистенциальный стержень. Число становится голо-акциденциальным, лишаясь причастности субстанциальной существенности. Нельзя сказать, что такая редукция всегда неоправданна. Скажем, у Ивана в кармане 3 рубля, у Петра – 10, а у Сергея – 110 руб. 53 коп. В таких случаях именно количественный аспект занимает первое место по значимости, и количество пребывает вне рамок имплицитной необходимости: с тем же успехом у Ивана могло бы быть 300 руб., а у Сергея – 500 тыс. долга. Аналогично, длина Нила составляет 6 671 км, а Невы только 74. Но существуют и принципиально иные ситуации, и со второй половины ХIХ в. они становятся все более заметными.

В таблице Менделеева номер элемента детерминирует его химические свойства, т.е. число фиксирует внутреннее качество объекта. Сходную описательную роль играют номера орбит электрона в модели атома Резерфорда – Бора. Когда ученые утверждали, что физическое пространство трехмерно, тем самым они придавали числу 3 обязательное значение. Когда их мнение изменилось в пользу четырех-, вернее, 3+1- мерности, место одной обязательности заняла другая. За каждой из цифр стоит целый список фундаментальных черт физической реальности, а также тип использованной теоретической модели, целое мировоззрение. Никто не скажет, что подобными цифрами мы можем свободно играть, не погрешив против логики, не нарушив идентичности исследуемого предмета. Но сейчас нас интересуют не столько естественные науки как таковые, сколько статус определенных чисел.




19
{"b":"95426","o":1}