Вблизи Солнца при высоких температурах конденсации первичного вещества протопланетной туманности ледяная и газовая компоненты (прежде всего водород, гелий) были потеряны, поэтому сформировавшиеся здесь планеты земной группы состоят преимущественно из тяжелых (скальных) пород. В составе же далеких планет, начиная с Юпитера, сохранились тяжелая, а также ледяная и газовая компоненты. Наиболее массивные планеты, Юпитер и Сатурн, удержали большие количества водорода и гелия, в то время как более удаленные от Солнца Уран и Нептун формировались при очень низких температурах конденсации, в основном из льдов (примерно на 80–90 %).
Верхний предел для общей массы малых планет кольца астероидов оценивается в 1/1000 массы Земли. Космогонически оправдано в настоящее время рассмотрение современного кольца астероидов как остатков некогда существовавшей более равномерно заполнявшей пространство популяции планетезималей, уцелевших после “чистки” этой популяции большими планетами Солнечной системы (и прежде всего Юпитером) за счет гравитационных резонансных возмущений. Эксцентриситеты орбит у большинства астероидов составляют 0,1–0,2, но в отдельных случаях достигают 0,8. Благодаря этому некоторые астероиды проникают внутрь орбит Марса и Земли. А вот астероид Икар в перигелии оказывается в два раза ближе к Солнцу, чем Меркурий, за что и получил свое имя.
На орбите Юпитера, в окрестности лагранжевых устойчивых точек либрации (“качания”) было обнаружено несколько десятков астероидов. Точки либрации располагаются так, что образуют с Солнцем и Юпитером равносторонние треугольники. “Греки” опережают Юпитер в его движении вокруг Солнца примерно на 6°, а “троянцы” располагаются на таком же угловом расстоянии позади него. Эти астероиды почти не испытывают возмущающего гравитационного влияния Юпитера. Их орбиты лишь медленно раскачиваются с незначительными амплитудами (за счет возмущений от Сатурна членство астероидов среди “троянцев” и “греков”, по-видимому, не постоянно).
Возможно, что “троянскими астероидами” Нептуна являются четыре объекта астероидного типа диаметром около 100 км, обнаруженные в конце 1993 г. за орбитой Нептуна, на расстоянии 32–35 а.е. от Солнца. Не исключено, что на самом деле это семейство более многочисленно. Малые тела могут сопровождать Венеру, Марс и Землю. “Троянец” странной природы, быть может, имеется у Луны. Он движется в 6° позади Луны по ее орбите и представляет собой скорее сгущение пыли, чем твердое тело (“облако Кордылевского”).
За всю историю человеческой цивилизации уже наблюдалось около 2000 кометных появлений. Но почти для половины из них нет сведений о точных положениях комет (хотя бы в три различных момента времени). Поэтому отсутствует какая-либо определенная информация об их орбитах. Ежегодно открывают около сотни комет, а тысячи, вероятно, остаются необнаруженными. Элементы орбит определены у менее 1000 комет.
Образование тел кометных размеров происходило на периферии планетной системы путем гравитационной неустойчивости в пылевом субдиске, который фрагментировал на множество пылевых сгущений. Обладая большими сечениями столкновений, сгущения росли значительно быстрее частиц и в итоге превратились в тела километровых размеров (ядра комет). В настоящее время большинство комет непосредственно примыкает к пограничной области Солнечной системы (а порядка 100000 а.е.). Значительно ближе к Солнцу — с афелиями, располагающимися между орбитами Юпитера и Нептуна, — находится лишь несколько семейств комет.
ОРБИТАЛЬНАЯ ЭВОЛЮЦИЯ КОМЕТ
Кометы в зависимости от возраста (числа прохождения кометами своего перигелия), а также удаленности их перигелиев от Солнца и размеров ядер подразделяются на активные, спящие и угасшие. Не исключено, что к числу последних относится значительная часть астероидов из групп Аполлона и Амура.
По типам орбит кометы принято подразделять на короткопериодические, с периодом обращения Т < 100 лет (основу составляет семейство комет Юпитера, Т < 20 лет) и долгопериодические Т > 100 лет.
Предполагается, что на дальних окраинах Солнечной системы расположены две зоны повышенной концентрации кометных ядер. Первая — сферическое облако Хиллса с большими полуосями орбит его членов 1000 < а < 20000 а.е. Вторая — квазисферическое облако Оорта (20000 < а < 100000 а.е.). Облако Хиллса состоит из комет, сформировавшихся в уран-нептуновой области протосолнечной системы и мигрирующих затем на периферию Солнечной системы под действием растущих протопланет. Число кометных ядер в облаке Хиллса ~1013-1014. Масса его может превышать на два порядка суммарную массу тел облака Оорта. Последнее образовано из планетезималей, выброшенных под влиянием гравитационных возмущений из области планет-гигантов. Образно говоря, облако Оорта представляет собой лишь слабый ореол — гало, который окружает намного более вместительное хранилище комет — банк Хиллса. Гравитационные возмущения от Юпитера и Сатурна преимущественно должны были удалять планетезимали за пределы Солнечной системы, в то время как Уран и Нептун вызывали миграцию планетезималей в пояс Койпера и облака Хиллса, Оорта.
![«Наука и Техника» [журнал для перспективной молодежи], 2008 № 01 (20) - _04.jpg_7](/BookBinary/942823/1745732243/_04.jpg_7/0)
Две группы малых планет, “греки” и “троянцы”, одинаково удаленные от Солнца и Юпитера, движутся в окрестностях устойчивых точек либрации L4 и L5
Долгопериодические кометы — выходцы из внешнего облака Оорта. Из некоторых модельных оценок следует, что за время существования Солнечной системы примерно половина комет из облака Оорта была потеряна. Современный поток новых комет, достигающий ближайших окрестностей Солнца (~ 10÷30 а.е.), составляет 5÷10 комет в год. Отток комет из облака Оорта компенсируется притоком их из более плотного внутреннего сферического облака.
Кометы не способны вырваться из облака Хиллса и направиться во внутренние области Солнечной системы. Внутренний “банк комет” более жестко связан с Солнцем и потому устойчивее к внешним возмущениям. Значительный вклад банка Хиллса в потоки новых кометных ядер в облако Оорта, а оттуда в глубины Солнечной системы происходит лишь при особенно тесных сближениях Солнца со звездами или массивными молекулярными межзвездными облаками, находящимися вблизи галактической плоскости (раз в десятки миллионов лет). Тогда возможны “кометные ливни”, с которыми может быть связано вымирание некоторых биологических видов и возникновение значительного числа кратеров на Земле.
Среднее время дрейфа комет из облака Оорта к Солнцу составляет несколько миллионов лег. Почти половина из них затем покидает Солнечную систему, а остальные трансформируются в периодические кометы. Максимальная потеря массы у наиболее ярких комет вблизи перигелия достигает 0,1–0,5 %, поэтому кометы, часто проходящие вблизи Солнца, существуют недолго. Они могут полностью “рассыпаться”, превратившись в метеорный поток. Но возможен и другой вариант: после многократных про хождений вблизи Солнца, за счет постепенного утолщения (упрочнения) внешней оболочки ее ядра (или пылевой мантии), возможна ее эволюция в “астероидальное тело”. Это вызывает увеличение времени “кометной жизни”.
У комет с перигелийным расстоянием q < 1,5 а.е. уменьшение блеска за один оборот составляет в среднем около 0,01m, а у комет с q >= 1,5 а.е. оно достигает ~0,04m. Подобное изменение блеска сопровождается неупорядоченными вариациями, но основная тенденция сохраняется, и типичное время жизни кометы — от нескольких сот до тысяч прохождений вблизи Солнца.
Но кометы могут “жить” и меньше, если вследствие внутренних напряжений из-за тепловых деформаций или приливного воздействия (Солнца или планет) их ядра разрушатся. Это произошло, например, с кометами Брукса, Веста, Шумейкеров-Леви-9. Разрушают кометные ядра и столкновения с другими небесными объектами — метеороидами, астероидами. Катастрофическое разрушение ядра приводит к заметному ослаблению блеска, а затем и к исчезновению комет.