Литмир - Электронная Библиотека
Содержание  
A
A

Контрастная чувствительность зрительного анализатора зависит также от частоты изменений яркости деталей во времени. Такие изменения могут возникнуть как паразитный эффект при передаче многокадровых изображений. Чем меньше размеры деталей, тем слабее это влияние. С увеличением частоты мельканий их заметность вначале увеличивается, а затем падает. При частоте, превышающей 40 Гц, мелькания незаметны. Изменения яркости могут повысить контрастную чувствительность зрения к обнаружению крупных деталей на порядок. Такое повышение имеет место при частоте мельканий, равной 3–15 Гц.

При кодировании изображений, хранения и передачи в цифровом коде, а также при использовании тех или иных алгоритмов улучшения изображений необходимо оценивать качество результата. Во всех этих задачах общим является вопрос о качестве изображения о том, чтобы в процессе обработки изображений поддерживать, повышать и восстанавливать его.

Для оценки качества передачи изображений любого типа удобно было бы иметь единый обобщенный критерий. Известно, что два цвета практически неразличимы при величине 4–6 ед. МКО. В качестве численного значения цветового различия используется пороговая величина, равная 6 ед. МКО. При любом методе передачи необходимы экспериментальные оценки изображений по нескольким критериям, перечень которых согласуется с общими свойствами трактов передачи данного типа и с перечнем возможных искажений сигналов в таких трактах. При оценке качества передачи изображений на практике иногда используется критерий СКО.

Приближенный характер оценок по приведенным выше критериям делает необходимой субъективную экспертизу качества на реальных изображениях.

В настоящее время субъективное качество оценивается двумя способами: либо определяется верность воспроизведения, либо оценивается дешифрируемость изображения.

Верность воспроизведения характеризует степень отклонения обработанного изображения от некоторого эталонного. Например, при оцифровке и визуализации изображения на мониторе компьютера могут возникать погрешности, проявляющиеся в потере РС, уменьшении контрастов и т. д. Некоторые погрешности воспроизведения улучшают дешифрируемость, поэтому существуют различные процедуры подчеркивания границ, дифференцирования, цветовой коррекции изображений.

Очевидно, что количественные меры верности и дешифрируемости изображений крайне необходимы для проектирования и оценки систем воспроизведения изображений. Эти меры во многом помогут избавиться от трудоемкости и подчас неточной современной методики оценки изображений посредством субъективной экспертизы. Кроме того, на основе количественных мер можно развивать методы оптимизации систем обработки изображений.

В разработке количественных критериев верности и дешифрируемости изображений достигнуты значительные успехи. Однако введенные критерии не являются достаточно совершенными: очень часто можно привести примеры изображений, качество которых формально оценивается как высокое, а субъективно как низкое, и наоборот.

В настоящее время наиболее распространенным способом определения качества изображений является субъективная экспертиза. В качестве экспертов привлекают наблюдателей-неспециалистов. Их оценки определяют качество изображения именно так, как его воспринимает средний наблюдатель.

Кроме того, проводятся опыты со специалистами, имеющими опыт обработки изображений, от которых следует ожидать более обоснованных оценок качества. Предполагается, что опытные наблюдатели замечают небольшие погрешности изображения, которые неспециалист может проглядеть.

Существуют два вида экспертных оценок: абсолютные и сравнительные. В первом случае наблюдатель должен оценить качество изображения по какой-то заранее определенной шкале. При некоторых методиках процесс оценивания облегчается тем, что наблюдателю предоставляется также набор эталонных изображений. Существуют и другие методики, когда наблюдатель вынужден принимать решение только на основании своего собственного опыта. При сравнительных оценках наблюдатель должен ранжировать набор конкретных изображений, т. е. расставить их в ряд по убыванию качества.

Изображения оцениваются экспертами по шкалам снижения и оценки качества. Шкала снижения качества применяется для сравнительной оценки изображений до и после преобразований. Шкала оценки качества применяется для оценки преобразованного изображения при отсутствии оригинала. Как правило, пользуются следующими пятибалльными шкалами.

Шкала снижения качества:

5 – искажения незаметны;

4 – искажения заметны, но не мешают;

3 – искажения заметны, немного мешают;

2 – искажения мешают, надоедают;

1 – искажения сильно мешают.

Шкала оценки качества:

5 – отличное качество;

4 – хорошее;

3 – удовлетворительное;

2 – плохое (неприемлемое);

1 – очень плохое (совершенно неприемлемое).

На основании оценок, данных различными наблюдателями, вычисляется среднеарифметическая оценка.

Распространенным видом шкалы оценок является шкала «общего качества», когда изображениям приписываются баллы, которые соответствуют градациям от «неудовлетворительно» до «отлично», приведенным в таблице 1.1. На практике каждое изображение поступает к наблюдателю, и он выставляет балл той категории, которая, по его мнению, в наибольшей степени соответствует качеству изображения. Вариантом данной шкалы является шкала «места в группе», или относительная шкала (таблица 1.2), когда наблюдатель оценивает качество изображения, сравнивая его со всеми другими изображениями, входящими в рассматриваемую группу.

Таблица 1.1 – Шкала общего качества изображения

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_010.jpg

Таблица 1.2 – Относительная шкала качества изображения

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_011.jpg

Еще одной распространенной шкалой оценок является шкала погрешностей (таблица 1.3), согласно которой наблюдатель должен оценить в баллах степень искажений, изменяющихся от «незаметных» до «крайне нежелательных».

Результаты экспертных оценок обычно выражают с помощью среднего балла, определяемого как:

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_012.jpg

где nk – число изображений k-й категории; Ck – соответствующий ей балл.

Таблица 3 – Шкала погрешностей

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_013.jpg
Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_014.jpg

Рисунок 1.6 – Сравнение шкал качества и погрешностей, применяемых для субъективной оценки изображений

Считается, что для получения надежной оценки качества изображения необходимо опросить не менее двадцати наблюдателей. Одной из трудностей, связанных с балльными оценками, является возможная нелинейность шкалы.

На рисунке 1.6 для сравнения помещены шкала абсолютного (общего) качества, шкала погрешностей и еще одна шкала погрешностей, состоящая из трех градаций. Сравнение шкал выполнено на основе субъективных оценок.

Для сравнения и оценки качества съемочных систем в США успешно используется Национальная шкала дешифрируемости снимков (National Imagery Interpretability Scale, NIIRS), которая первоначально разрабатывалась для военных организаций, имеющих в своем штате опытных специалистов и использующих визуальные методы дешифрирования. Шкала NIIRS основана, прежде всего, на пространственном разрешении снимков, но в ней учитываются также факторы, связанные с отношением сигнал/шум и функцией рассеяния точки. Краткое описание 10-уровневой шкалы NIIRS, разработанной для панхроматических снимков, приведено в таблице 1.4. Более подробное описание содержится в работе Лихтенауэра (Leachtenauer и др., 1997) и в документации IRARS (1996). Была также разработана шкала NIIRS для оценки многоспектральных снимков (IRARS, 1995). Процедура оценки заключается в том, что снимок отдают опытному специалистудешифровщику (сертификат NIIRS) и просят его определить уровень деталей, которые он может распознать. Средний балл процедуры для панхроматических снимков, полученных системой IKONOS с разрешением 1 м по шкале NIIRS, составил 4,5.

9
{"b":"894279","o":1}