Литмир - Электронная Библиотека
Содержание  
A
A

В процессе обучения происходит усиление синаптических связей между соответствующими нейронами головного мозга, вследствие чего возникает кратковременное запоминание информации, которая хранится без реактивации соответствующей нейронной сети от нескольких минут до нескольких часов. При долговременном запоминании информации, длящемся месяцами, наблюдается активация и экспрессия генов, синтез соответствующих белков и рост новых связей. При более сложных видах обучения участвуют оба механизма. Например, осмысление нового материала требует определенного времени. В процессе этого усиливаются синаптические связи и в зависимости от сложности проблемы может осуществляться рост новых связей. Данный механизм будет задействован до тех пор, пока не будет преодолено какое-то пороговое значение соответствующей нейронной сети головного мозга. В результате происходит понимание (инсайт) решаемой задачи. Пороговое значение нейронной сети характеризует степень незнания материала, индивидуальность организма и определяется пороговыми значениями нейронов, составляющих искомую сеть. При дальнейшем обучении в аналогичной области процесс понимания происходит быстрее за счет использования начальных знаний, заложенных в соответствующих синапсах.

В зависимости от вида взаимодействия обучающегося с внешней средой можно условно выделить обучение с учителем и без него. Обучение с учителем происходит при взаимодействии ученика с конкретным индивидом (учителем), с которым он находится в состоянии обратной связи.

В этом случае имеется конкретный желаемый выход и алгоритм его получения. В процессе взаимодействия реальная реакция ученика сравнивается с эталонной реакцией учителя. В зависимости от величины их несовпадения (целевая функция ошибки) происходит соответствующая перестройка синаптических связей в целях минимизации ошибки. При обучении без учителя нет конкретного учителя (учитель – внешняя среда) и ученик находится в состоянии обратной связи с внешней средой. Обучение здесь сводится к адаптации индивида к внешней среде. В обоих типах обучения используются как положительные, так и отрицательные обратные связи в соответствующих нейронных структурах головного мозга. Так, обучение с отрицательной обратной связью происходит для минимизации ошибки целевой функции. Положительная обратная связь может интенсифицировать процесс обучения при успешном взаимодействии индивида со средой.

Важной характеристикой процесса обучения является обобщающая способность, характеризующая способность индивида интегрировать частные данные для определения закономерностей и пролонгации результатов. К этому относится способность после обучения на одних данных применять полученные знания для других данных или рассуждения от частного к общему. Обобщающая способность – важная черта нейронной организации мозга.

2.5. Искусственные нейронные сети

Искусственная нейронная сеть (ИНС) – математическая модель, а также ее программное или аппаратное воплощение, построенные по принципу организации и функционирования биологических нейронных сетей – сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке их смоделировать.

Основой ИНС является искусственный нейрон, который является отдаленным подобием биологического нейрона (рисунок 2.3).

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_021.jpg

Рисунок 2.3 – Упрощение от биологического нейрона к искусственному нейрону

Искусственный нейрон имеет несколько входов (аналоги синапсов в биологическом нейроне) и один выход (аналог аксона).

Математически нейрон выполняет функцию суммирования S входных сигналов Х с учетом их весов W, и затем результат обрабатывается функцией активации F. Результат на выходе Y зависит от входных сигналов X и их весов W, а также от функции активации. Коэффициенты W являются элементами памяти нейрона и основными элементами обучения нейронной сети.

Функция активации ограничивает амплитуду выходного сигнала нейрона. Обычно нормализованный диапазон амплитуд выходного сигнала нейрона лежит в интервале [0, 1] или [-1, 1].

На вход функции активации подается сумма всех произведений сигналов и весов этих сигналов.

Наиболее часто используемыми функциями (рисунок 2.4) активации являются:

1. Пороговая функция. Это простая кусочно-линейная функция. Если входное значение меньше порогового, то значение функции активации равно минимальному допустимому, иначе – максимально допустимому.

2. Линейный порог. Это несложная кусочно-линейная функция. Имеет два линейных участка, где функция активации тождественно равна минимально допустимому и максимально допустимому значению и есть участок, на котором функция строго монотонно возрастает.

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_022.jpg

Рисунок 2.4 – Типы функции активации нейрона: а) функция единичного скачка; б) функция единичного скачка с линейным порогом; в) гиперболический тангенс у=th(x); г) функция сигмоида у=1/(1+exp(-ax))

3. Сигмоидальная функция, или сигмоида. Это монотонно возрастающая дифференцируемая S-образная нелинейная функция. Сигмоида позволяет усиливать слабые сигналы и не насыщаться от сильных сигналов.

4. Гиперболический тангенс. Эта функция принимает на входе произвольное вещественное число, а на выходе дает вещественное число в интервале от –1 до 1. Подобно сигмоиде, гиперболический тангенс может насыщаться. Однако, в отличие от сигмоиды, выход данной функции центрирован относительно нуля.

Объединение искусственных нейронов в группу формирует нейронную сеть (рисунок 2.5).

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_023.jpg

Рисунок 2.5 – Схема формирования нейронной сети

Слой нейронной сети – это множество нейронных элементов, на которые в каждый такт времени параллельно поступает информация от других нейронных элементов сети.

Простая нейронная сеть состоит из входного слоя, скрытого слоя и выходного слоя. Сети, содержащие много скрытых слоев, часто называют глубинными нейронными сетями.

2.6. Топология искусственных нейронных сетей

Среди основных топологий нейронных сетей можно выделить полносвязные, сверточные и рекуррентные нейронные сети.

Полносвязные нейронные сети имеют несколько слоев, которые связаны между собой таким образом, что каждый нейрон последующего слоя имеет связь со всеми нейронами предыдущего слоя. Сложность сети резко возрастает от увеличения размерности входных данных и от количества скрытых слоев. Так, для анализа изображения форматом 28×28 элементов потребуется 784 нейрона в скрытом слое, и каждый из них должен иметь 784 входа для соединения с предыдущим слоем. Другая проблема заключается в том, что в полносвязной сети изображения представляют собой одномерные последовательности и при этом не учитываются особенности изображений как структуры данных. Тем не менее, для изображений небольших форматов можно использовать и полносвязную сеть.

Сверточные нейронные сети предназначены для обработки двумерных структур данных, прежде всего изображений. Сверточная сеть представляет собой комбинацию трех типов слоев:

– слои, которые выполняют функцию свертки над двумерными массивами данных (сверточные слои),

– слои, выполняющие функцию уменьшения формата данных (слой субдискретизации),

– полносвязные слои, завершающие процесс обработки данных.

Структура сверточных нейронных сетей принципиально многослойная. Работа сверточной нейронной сети обычно интерпретируется как переход от конкретных особенностей изображения к более абстрактным деталям и далее к еще более абстрактным деталям вплоть до выделения понятий высокого уровня. При этом сеть самонастраивается и вырабатывает необходимую иерархию абстрактных признаков (последовательности карт признаков), фильтруя маловажные детали и выделяя существенное. Примером классической сверточной нейронной сети является сеть VGG16 (рисунок 2.6).

13
{"b":"894279","o":1}