Литмир - Электронная Библиотека
Содержание  
A
A

Распределенная система – распределенная система обеспечивает решение проблемы управления на базе распределенной системы знаний в отличие от многоагентных систем, где базы знаний отдельных агентов взаимодействуют.

2.2. Принципы классификации систем искусственного интеллекта

Классификация систем искусственного интеллекта отражает существенные (значимые) характеристики СИИ, включая особенности контура управления, в рамках которого используется СИИ, и технологии построения и использования знаний.

Представлена схема классификации, отражающая основные особенности СИИ для решения прикладных задач, помогающая определить направления их стандартизации (рисунок 2.1).

Схема классификации базируется на ключевых, с точки зрения стандартизации, основаниях классификации.

Каждое из рассматриваемых оснований представлено в виде нескольких классов верхнего уровня. В большинстве случаев более детальную иерархию классов или принципы классификации можно найти по ссылкам на соответствующие стандарты или документы.

Базовые классы СИИ целесообразно группировать на основе следующих принципов:

1) по классам и категориям объектов в управлении;

2) по технологиям построения, приобретения и использования знаний;

3) по функциям, которые выполняет СИИ в контуре управления;

4) по методам и технологиям, используемым в СИИ;

5) по методам и средствам взаимодействия СИИ с другими системами и человеком-оператором.

Эти подходы к классификации являются основными. Каждый из них может иметь иерархическую структуру.

Дополнительные классификации могут быть связаны со специальными требованиями к объектам, процессам, контуру управления, архитектуре, ресурсам с учетом окружающей среды (интероперабельность, нормы регулирования, безопасность, действия стандартов, этические требования, надежность, отказоустойчивость, условия внешней среды и т. д.).

Классификация, связанная с описанием каждого класса, представляет собой перечень объектов, соответствующих данному классу.

Классы, к которым могут быть отнесены СИИ, необязательно исключают друг друга. Для некоторых СИИ может быть применен только один из классов, а для других – несколько.

Каждая конкретная позиция классификации может быть детализирована, как по уже существующим стандартам, так и по сложившейся практике.

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_016.jpg

Рисунок 2.1 – Схема классификации СИИ

Рассмотрены следующие основания для классификации:

1) по степени автономности;

2) по степени автоматизации;

3) по архитектурному принципу;

4) по структуре и процессам обработки знаний:

а) по модели знаний;

б) по управлению знаниями;

в) по методу обучения;

5) по специализации систем ИИ:

а) специализированные (используют единый домен знаний);

б) комплексные (используют множество доменов знаний);

6) по методам обработки информации;

7) по функциям в контуре управления;

8) по методам достижения интеграции и интероперабельности СИИ;

9) по опасности последствий;

10) по конфиденциальности;

11) по видам деятельности;

12) по взаимодействию с человеком-оператором.

Возможно расширение видов классификации систем ИИ.

Схема классификации представлена в таблице 2.1.

Таблица 2.1 – Схема классификации систем искусственного интеллекта

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_017.jpg
Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_018.jpg
Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков - i_019.jpg

Возможно дополнение классификации СИИ как по новым основаниям, так и путем детализации классов по специализированным классификациям.

Классы можно характеризовать различными дополнительными аспектами или подклассами, например:

– наличием/отсутствием внешнего наблюдения, осуществляемого человеком-оператором либо другой автоматизированной системой;

– степенью понимания системы;

– степенью реактивности/отзывчивости;

– уровнем устойчивости функционирования;

– степенью надежности и безопасности;

– видом аппаратной реализации;

– степенью приспособляемости к внутренним или внешним изменениям;

– способностью оценивать свою собственную работоспособность/пригодность;

– способностью принимать решения и планировать.

2.3. Применение технологий искусственного интеллекта при решении задач дешифрирования аэроснимков

Развитие элементной базы, материалов и технологий, в том числе искусственного интеллекта, робототехники, информационных и коммуникационных технологий, технологий цифровых двойников, способствует созданию нового поколения интеллектуальных бортовых аэросъемочных систем (аэрофотографических, телевизионных, инфракрасных, лазерных, радиолокационных, радиотехнических) и систем автоматизированного и автоматического дешифрирования (СААД) данных, полученных бортовыми аэросъемочными системами (БАС).

В рамках реализации технологий искусственного интеллекта в БАС и СААД сформулированы следующие основные задачи:

создание единой нормативной, информационной, технологической и инфраструктурной базовой платформы в области технологий искусственного интеллекта;

создание системы испытаний и опытной эксплуатации технологий искусственного интеллекта;

обоснование показателей качества искусственного интеллекта и разработка методического обеспечения оценивания этих показателей;

создание цифровых двойников с целью выполнения технических и тактико-технических требований к БАС и СААД, снижения себестоимости, сроков разработки и испытаний БАС и СААД, повышения их технологичности, а также повышения надежности и эффективности эксплуатации БАС и СААД;

развитие интеллектуальных средств и методов дешифрирования, обеспечивающих оперативное и надежное автоматизированное (автоматическое) обнаружение и распознавание объектов, в том числе замаскированных, а также ранжирование объектов по уровню угроз;

автоматизированная комплексная оценка и прогнозирование тактической обстановки и объединение априорных данных о противнике;

комплексное дешифрирование данных от аэрофотографических, телевизионных, инфракрасных, лазерных, радиолокационных, радиотехнических БАС;

автоматизация работы, контроля, диагностирования и прогнозирования технического состояния оборудования БАС и СААД.

Перечень задач, которые целесообразно решать с использованием технологий искусственного интеллекта в БАС и СААД, в зависимости от вида обрабатываемых данных, имеет следующие основные уровни классификации:

задачи в интересах обработки видовой (некоординатной) информации;

задачи в интересах обработки координатной информации;

задачи в интересах обработки неструктурированной (слабоструктурированной) информации (обеспечение кибербезопасности, реализация систем поддержки принятия решений и т. п.).

Для решения указанных задач для БАС и СААД устанавливаются следующие технические требования:

выполнение этапа предобработки за минимально допустимое время, обеспечивающего возможность выполнения более сложного основного этапа обработки информации в реальном масштабе времени;

использование наиболее простых математических операций для наилучшего быстродействия и интеграции алгоритмов в специализированные вычислительные устройства, способные работать в условиях мобильных механизмов и дестабилизирующих факторов полета;

обеспечение оптимального качества обработки информации, поступающей от различных информационных систем (оптико-электронных, радиолокационных, радиотехнических, лазерных и др.), позволяющее принятие за короткое время рациональных решений;

11
{"b":"894279","o":1}